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How do humans learn, through social interaction, whom to depend on in different situations? We compared
the extent to which inferred trait attributes—as opposed to learned reward associations previously examined
as part of feedback-based learning—could adaptively inform cross-context social decision-making. In four
experiments, participants completed a novel task in which they chose to “hire” other players to solve math
and verbal questions for money. These players varied in their trait-level competence across these contexts
and, independently, in the monetary rewards they offered to participants across contexts. Results revealed
that participants chose partners primarily based on context-specific traits, as opposed to either global trait
impressions or material rewards. When making choices in novel contexts—including determining who to
choose for social and emotional support—participants generalized trait knowledge from past contexts that
required similar traits. Reward-based learning, by contrast, demonstrated significantly weaker context-
sensitivity and generalization. These findings suggest that people form context-dependent trait impressions
from interactive feedback and use this knowledge to make flexible social decisions. These results support a
novel theoretical account of how interaction-based social learning can support context-specific impression
formation and adaptive decision-making.
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Human social behavior is rooted in direct interpersonal interac-
tion, and the feedback we receive from others through interaction
provides a basis for the impressions we form of them. Yet, inter-
actions with a person often take place across a variety of contexts,
and the way a person acts in one context can differ dramatically from
how they act in another. For instance, a friend who makes great
conversation at a party may struggle to listen supportively after a bad
day, and a colleague who offers excellent math advice may suggest
poor advice about a social conflict. To effectively navigate social
relationships, people must learn to choose the right partner in the
appropriate context—for instance, learning whom to seek for social
support as opposed to financial advice. In addition, people must be
able to generalize this learning to novel situations, since they cannot

directly experience every scenario in which they might interact with
a person. This ability is key to survival in complex human societies:
context-sensitive social decisions afford greater access to resources
embedded in social networks (Bendtsen et al., 2016; Cornwell &
Cornwell, 2008; Maisel & Gable, 2009; Morelli et al., 2015, 2017;
Shrout et al., 2006).

How do humans accomplish this complex form of interactive
social learning, which involves learning from feedback from other
humans across different contexts? Although much is known about
nonsocial forms of feedback-based (i.e., reinforcement) learning
across contexts (see Gershman, 2017, for review), the question of
how people learn about social partners in different contexts through
trial-and-error feedback in interactions remains unstudied. Here, weT
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integrate approaches from social cognition and reinforcement learn-
ing to investigate how people form impressions through interaction
that can guide context-specific social choices.

Reinforcement Learning in Social Contexts

In social interactions, we learn about others through their feed-
back on our actions—a trial-and-error process that characterizes
reinforcement learning. While reinforcement is critical to interactive
learning, it has been studied primarily in nonsocial contexts (Daw
et al., 2011; Sutton & Barto, 1998; Thorndike, 1911). In reward-
based reinforcement learning, people learn to associate actions with
rewarding outcomes and to repeat rewarded behaviors. (Similarly, in
the context of negative reinforcement, people learn to associate
actions with punishment and to avoid punished behaviors.) Recent
research has examined this form of learning in social contexts and
has shown that rewards similarly reinforce behavior in social
interactions (Bhanji & Delgado, 2014; FeldmanHall et al., 2017;
Hackel et al., 2015; Lindström et al., 2014).
How might reward learning support context-dependent choices?

As an example, one might learn to associate another person with
rewarding outcomes in one domain (e.g., help fixing a computer) but
not in another (e.g., help editing a manuscript). These rewarding or
nonrewarding outcomes may reinforce one’s choice of interaction
partner in a given context, such that the same partner is chosen again
in that context in the future. Indeed, the ability to make context- (or
state) dependent choices is central to formal models of reinforce-
ment learning (Dayan &Niv, 2008; Gershman et al., 2015; Sutton &
Barto, 1998) and has been found across people and animals (Bouton&
Todd, 2014; Schuck et al., 2016; Trask & Bouton, 2014).
By receiving reward feedback, people could thus learn to

approach another person in some contexts and avoid that person
in different contexts. Moreover, people and animals often generalize
learning about one stimulus to similar novel stimuli (Honig &
Urcuioli, 1981; Shepard, 1987; Soto et al., 2014). If people gener-
alize learning from reward feedback, they might choose an interac-
tion partner in a novel context (e.g., advice on writing an email)
based on the rewards that partner offered in a similar context (e.g.,
advice on writing a manuscript).
However, while reward reinforcement provides a mechanism for

interaction-based learning, its utility for cross-context social learn-
ing may be limited: because reward value is encoded as a generic,
content-less metric (i.e., a common scale of value for different kinds
of goods; Levy & Glimcher, 2012), it is unlikely to capture the
nuance required for the flexible choice of social partners who may
vary in their behavior across context.

Trait-Based Learning

Social psychological research on impression formation has tra-
ditionally focused on the learning of trait impressions, in contrast to
the focus on reward value in reinforcement learning. Traits offer a
highly nuanced and variegated characterization of an individual that
affords much more precise predictions about a person’s behavior in
specific situations. Although major theories of trait impressions tend
to focus on global, context-spanning inferences (e.g., Fiske et al.,
2007; Olivola et al., 2014; Rosenberg et al., 1968; Tavares et al.,
2015; Wojciszke, 2005), there is also substantial evidence for
context-dependent impressions (Friesen & Kammrath, 2011;

Gawronski & Cesario, 2013; Kammrath et al., 2005; Plaks &
Higgins, 2000; Rydell et al., 2009; Shoda et al., 1993; Shoda &
Mischel, 1993). Notably, traits can also imply the availability of
rewards; for instance, a kind individual is likely to provide us with
rewarding experiences. However, traits differ from material rewards
in that they provide abstract concepts that let us predict different
kinds of rewards across different situations; a kind individual may
provide us with a compliment or a gift, but they won’t necessarily
provide us with rewarding stock advice.

Hence, in contrast to reward value, trait inferences appear to
provide the nuance and situational specificity needed for adaptive
contextualized learning and decision-making. A limitation of the trait
approach, however, is that existing models of trait inference focus
almost exclusively on passive, noninteractive forms of learning, such
as those based on behavioral observation, behavioral descriptions, or
conceptual associations (Asch, 1946; Hastie, 1980; Heider, 1958;
Jones & Nisbett, 1987; Kelley, 1967; Rosenberg et al., 1968,
Uleman & Kressel, 2013; Winter & Uleman, 1984). These forms
of trait inference rely on concept-based learning processes, such as
semantic learning of beliefs and associations, which function very
differently from the instrumental learning mechanism involved in
interactive learning (Amodio, 2019; Amodio & Berg, 2018).

Despite the traditional focus on passive modes of trait inference,
recent research has begun to show that trait impressions can also be
formed through direct social interactions via mechanisms of rein-
forcement learning (e.g., Boorman et al., 2013; Hackel et al., 2015,
2020). In a study by Hackel et al. (2015), participants interacted with
players in a money sharing game with the goal to learn about the
players and their reward value. These players shared amounts that
were either large or small in absolute terms while, independently,
representing a large or small proportion of the player’s total
endowment. With this design, participants could learn from the
reward value associated with a player, based on positive or negative
outcomes, or, independently, the player’s generosity—a trait-like
attribute that involves the inference of a person’s disposition from
their behavior (Heider, 1958).

Results indicated that participants simultaneously encoded each
player’s reward value, based on the absolute amount, and trait-level
generosity, based on the proportional amount, as revealed in behav-
ioral choice patterns and neural activity. Although behavioral
economic models suggest that reward value alone should drive
choice preferences, an analysis that considered the joint effects of
reward-based and trait-based learning found that choices were more
strongly guided by traits. Moreover, while both forms of learning
were associated with prediction error signals in ventral striatum, a
hallmark of feedback-based reward learning (Garrison et al., 2013),
only trait learning was additionally associated with regions impli-
cated in social impression updating (Mende-Siedlecki, Baron, &
Todorov, 2013; Mende-Siedlecki, Cai, & Todorov, 2013; Mende-
Siedlecki & Todorov, 2016).

This research also demonstrated that, like reward learning, the
feedback-based learning of traits may be a domain-general process:
participants formed both reward-based and trait-based associations
when interacting with humans as well as with nonhuman objects
(e.g., slot machines), both of which may be characterized in terms
of their absolute reward value and their proportional generosity
(Baetens et al., 2017; Spunt & Adolphs, 2015; Waytz et al., 2014).
Yet, while these learning processes may be domain-general, the
process of inferring traits through interactive feedback is particularly
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relevant to social relations (Heider, 1958). Indeed, subsequent work
revealed that people rely more on trait- than reward-based informa-
tion when interacting with humans in comparison to interacting with
slot machines (Hackel et al., 2020). Thus, although trait-based
learning is not unique to social interactions, people appear to rely
on it more heavily when learning about social than nonsocial agents.
Together, these recent findings suggest that trait inferences can

indeed be made through direct interactive learning (i.e., reinforce-
ment learning). Importantly, given our present questions, they raise
the possibility that, in contrast to reward-based learning, interactive
trait learning can support context-specific impression formation and
context-appropriate social decision-making.

Effects of Interactive Reward and Trait Learning
on Flexible Social Choices

How might interaction-based trait impressions support context-
dependent choice? Trait concepts provide nuanced, high-level
information about a stable characteristic, such as one’s competence
in computer programming as opposed to creative writing. This
conceptual specificity afforded by trait inference, rooted in semantic
knowledge structures (Amodio, 2019), lends itself to flexible,
context-specific choices. That is, people have rich conceptual
knowledge of how different traits relate to one another and to
specific behaviors; for instance, a person who shares resources is
“cooperative,” and “cooperative” is distinct from “assertive” but
similar to “trustworthy” (Stolier et al., 2020). This knowledge
permits people to form meaningful inferences and predictions about
an individuals’ behavior across contexts that differ in the specific
expression of a trait—for instance, understanding why a partner was
helpful in tasks that required the sharing of resources but not in tasks
requiring negotiation. People could estimate the value of interacting
with a partner in a specific setting based on this fine-grained trait
knowledge.
In turn, this possibility suggests a new prediction about how

people generalize from past interaction experiences to choose
partners in novel social contexts: People might choose partners
based on the similarity of traits required by new and previous
contexts. For instance, imagine a colleague who offers excellent
help editing a manuscript. Beyond generalizing to contexts that
appear similar (e.g., help editing an email), people may generalize to
contexts that require traits perceived as similar (e.g., offering
empathy, to the extent that a perceiver views socioemotional skills
as similar to writing skills), even if the contexts bear little surface
similarity to each other.
Trait knowledge can therefore serve as a conceptual map that

allows people not only to make sense of context-dependent feedback
during learning but also to generalize in new contexts. In contrast,
reward feedback offers a commonmetric of value for different kinds
of outcomes, without providing the same conceptual specificity that
allows people to make sense of context-dependent feedback during
learning. For this reason, reward-based associations are less likely to
generalize adaptively across context.

Overview of Studies

In the present research, we investigated how people learn about
social partners through both reward feedback and social trait
feedback during interactions in different contexts. That is, we

measured the extent to which social choices are guided by context
dependent as opposed to global learning of traits and rewards. We
hypothesized that trait learning affords greater context-dependence
than reward learning in social interactions, such that participants
would choose interaction partners as a function of their distinct
competencies in different contexts. We tested this core hypothesis in
four studies.

In addition, in Studies 3 and 4, we examined participant choices
and social preferences in novel contexts, including preferences for
empathy and social support. We hypothesized that participants
would generalize value based on the conceptual similarity of traits
required in old and novel contexts. In this manner, trait learning
would afford greater flexibility when applying learning to choices in
novel contexts within social interactions.

In each study, participants learned about other individuals in a
money sharing task, modeled after previously established reinforce-
ment learning paradigms (Hackel et al., 2015). Although real-life
social interaction is often very complex, this task captures the
essential feature of active, interaction-based learning: the process
of one individual engaging with another person and receiving
feedback from that person. This form of learning differs from
previously studied passive social learning processes, such as reading
about another person or observing their behavior, which do not
involve feedback on one’s action—a crucial distinction in terms of
underlying learning mechanism and implications for decisions and
behavior (e.g., Foerde et al., 2006; Poldrack et al., 2001). Hence, this
task provided a valid means for testing our hypotheses regarding the
roles of reward-based and trait-based in interactive social learning
across contexts.

Study 1

In Study 1, participants played a game in which they learned
about other players through their active choices and feedback across
repeated interactions in two different contexts (in domains assessing
math vs. verbal ability). In each context, feedback indicated (a) the
absolute reward value of choosing a particular player on a specific
trial as well as (b) the player’s trait-level competence, as revealed by
the proportion of available points they earned. By independently
varying the reward value and trait competence associated with each
player in each context, this design permitted us to test the degree to
which each aspect of feedback—reward and trait—was learned and
applied to decisions across contexts. We expected participants to
learn from both the rewards and traits associated with each player but
hypothesized that cross-context interactive learning and decision-
making would rely more heavily on trait-based than reward-based
inferences.

Method

Overview

We adapted a previously validated task to distinguish reward and
trait learning (Hackel et al., 2015). Participants played a game in
which they learned about four people who had ostensibly partici-
pated in prior sessions. Participants were told these other players had
answered verbal and math questions from the Graduate Record
Examination (GRE) in order to win points that would be converted
to money. Participants were further told that GRE questions varied
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in the number of points they were worth, and that players had won a
proportion of these points on each trial based on how quickly and
accurately they answered each question. Hence, the absolute amount
of points associated with a player on a given trial (e.g., reward value)
varied independently of the proportion they earned (indicating their
competency in answering the question). This design allowed us to
independently manipulate the reward value and trait implications of
each instance of feedback.
Critically, players were presented in two different contexts: a

“math” context, representing responses to math questions, and a
“verbal” context, representing responses to verbal questions. Thus,
participants’ choices could reflect the average rewards a player
provided in each context, their competencies in each context, or
both. This design allowed us to distinguish context-dependent and
global learning of rewards and traits.
We report how we determined our sample size, all data exclu-

sions, all manipulations, and all measures included in each study.
Sample size for each study was determined before any data analysis.
De-identified data from each study have been made available at:
https://osf.io/496rn/?view_only=1d5f069aa26b421f9838e7328ba
8f6a6.

Participants

Fifty undergraduate students from New York University (10
males, 40 females, Mage = 18.94, SD = .91) participated in Study 1
for course credit. Sample size was determined a priori as a minimum
of 50 participants, based on past work using a similar task (within-
participants design with many trials per participant) which produced
large effect sizes (Hackel et al., 2015). The study was approved by
the New York University Committee on Activities Involving
Human Subjects, and informed consent was collected from all
participants. Although this sample was relatively homogeneous
in terms of age, past work has observed similar findings across
student and online samples when using similar tasks (Hackel et al.,
2015, 2020; Hackel & Zaki, 2018).

Stimuli

Participants viewed avatars representing four previous players.
Gender and race were held constant across the four avatars to avoid
any cues to social group membership that could influence social
judgments. For each participant, the four avatars were randomly
assigned to the four competence/reward levels (see Table S1),
ensuring that variability in visual features (e.g., hairstyle) was
randomly distributed across player types and would not influence
effects of interest.
Players varied independently on math and verbal ability—some

were high on one but low on the other, high on both, or low on
both—as reflected by the average proportion of points they accrued
in each domain (Table S1). Each player was also associated with a
unique combination of reward levels (i.e., high or low average
amount earned) on verbal and math trials; math reward values and
verbal reward values were also orthogonal to one another. Finally,
rewards in a given context (e.g., verbal rewards) were orthogonal to
competence in the same context (e.g., verbal ability; see Table S1 in
Supplemental Materials for average trait and reward values in each
context).

In order to ensure sufficient learning without excessive difficulty,
the target set was restricted to four individuals. This required an
orthogonalization scheme in which the pairs of variables listed
above were independent of one another within subjects and the
remaining pairs of variables were rendered orthogonal between
subjects, with subjects randomly assigned to have a positive or
negative correlation between these variables (see Table S1). Hier-
archical analyses including data from all participants could therefore
distinguish effects of reward learning and trait learning.

Procedure

Upon arriving at the experiment site, participants were told that
they would be assigned to one of two roles. In a Player A role, they
would answer GRE questions to win points worth money, based on
how quickly and accurately they answer. In a Player B role, they
would learn about the responses of previous Player A participants
and win points as a result of how Player A participants performed. In
reality, all participants were assigned to the Player B role through a
rigged drawing, such that participants would learn from the beha-
viors of past players (see Supplemental Material for complete
instructions text).

This task included a training phase and a test phase. During the
training phase, participants could learn about players through their
choices and players’ feedback across repeated interactions. This
phase allowed us to examine the process of feedback-based learning
across contexts. The test phase was designed to assess decision
outcomes; participants made choices without feedback and their
choice patterns yielded a fine-grained assessment of the reward-
based and trait-based choice.

Training Phase

In the training phase of the task, participants were told that players
had answered a verbal or math GRE question on each round of a
prior session and won a proportion of available points based on the
speed and accuracy of their response. To prevent the belief that point
pool amounts were related to question difficulty or that players were
more strongly motivated by larger points pools, participants were
told that the point pool was set by a computer algorithm on each
round, in a manner unrelated to the difficulty of the questions, and
that the point pool was unknown to each prior participant before
answering. These instructions were again emphasized in a post-
instruction comprehension quiz delivered by the experimenter.

Participants were informed that, on each round, they would see
two of the four players and pick one of them to “hire” for the round.
They were informed that choices would be followed by feedback
indicating the number of points that player earned as well as the
point pool available to the player on that round. Moreover, parti-
cipants were told they would receive the number of points earned by
their chosen player on each round, allowing them to accumulate
points that would be exchanged for money at the end of the
experiment. In other words, participants received money based
on the amount earned by the player they chose on each round.

The task instructions referred equally to variability in rewards and
traits associated with players. Additionally, instructions made it
clear to participants that their explicit goal was to earn money.
Finally, this task has been shown to support learning on the basis of
both reward and trait information (Hackel et al., 2015, 2020). Hence,
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the task and instructions were designed to ensure equal opportunities
to learn from reward value and trait information.
Participants completed 168 trials of the learning phase, including

84 verbal trials and 84 math trials. Verbal and math trials were
pseudorandomly interleaved in a different order for each participant,
across three blocks of 56 trials (with short rest breaks in between to
avoid fatigue). At the start of each trial, the word “Math” or “Verbal”
was displayed for 2 s to indicate the upcoming trial type (Figure 1).
Immediately following the cue, participants viewed two avatars;
each possible pair of avatars was encountered 14 times in each
context. Each avatar was equally likely to appear on each side of the
screen. During a subsequent 2-s choice epoch, participants indicated
which avatar they preferred to hire by pressing one of two response
keys. Immediately following choice, feedback was displayed, for
3 s, indicating the number of points the selected participant earned

(labeled “earned”) as well as the total number of points available to
the player on that trial (labeled “out of”).

The reward and competence values displayed during feedback
were generated using average values for the chosen player (dis-
played in Table S1) plus noise with SD = 0.15 for competence and
SD = 7.5 for reward. These noise distributions were equivalent
given the difference in scaling for average trait and reward values,
even though the raw values of the standard deviations differed, and
therefore equated for learning difficulty. The task was implemented
using the Psychtoolbox for Matlab (Kleiner et al., 2007; Pelli, 1997).

Test Phase

In the test phase portion of the task, participants were informed
that the point pool associated with each player would now be shown
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Figure 1
Schematic of Learning and Choice Task

MATH

Earned: 50
Out of: 80

VERBAL
Do you prefer…

Earned:35
Out of: 40Cue (2s)

Choice (2s)
Feedback (3s)

Do you prefer…

Do you prefer…
Do you prefer…

Time

VERBAL
Do you prefer…

Earned: 35
Out of: 40

+

Cue (2s)
Choice (4s) Fixation (1s)

Do you prefer…

Time

MATH

Pool: 100 Pool: 80 Do you prefer…

Pool: 70 Pool: 80

Cue (2s)
Choice (4s)

(b)

(a)

Note. (a) In the learning phase, participants made choices to “hire” four ostensible earlier participants who completed verbal and math GRE
questions to win points worth money; participants won any points earned by the player they hired. A cue before each trial revealed the upcoming
learning context (verbal or math); contexts were interleaved (Studies 1–3) or blocked (Study 4). Feedback indicated the number of points earned by
the partner (and thus reward value to the participant), as well as the proportion of available points earned (indicating the competence of the partner).
(b) In the test phase, participants chose a partner while viewing the point pool available for partners to earn. No feedback was provided. GRE =
Graduate Record Examination. See the online article for the color version of this figure.
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above each picture before each choice so they can use this informa-
tion to make decisions. In addition, participants were informed their
winnings for this phase would be displayed only after completion of
the block rather than after each choice. This phase allowed a test of
prior learning without any further adaptation to feedback.
Participants completed 192 trials of the test phase, including 96

verbal trials and 96 math trials. As in the training phase, verbal and
math trials were pseudorandomly interleaved. Trials were divided
into four blocks of 48 trials.
At the start of each test phase trial, the word “Math” or “Verbal”

again appeared on screen for 2 s to indicate trial type. Following the
cue, participants viewed two of the four avatars; each pair of avatars
was seen 16 times in each context. Each avatar was equally likely to
appear on each side of the screen. Above each avatar, a point pool
was displayed representing the total number of points available for
the question being answered. To determine point pools, a random
integer from 10 to 100 was generated as the pool value for one of the
players. Next, this amount was multiplied by one of seven ratios
(0.33, 0.67, 0.9, 1, 1.11, 1.5, 3) to determine the point pool for the
second player. The ratios were designed to be symmetric around 1,
allowing fine-grained expression of competence knowledge (e.g.,
knowing to choose a target who has 100 points available and earns
80% over a target who has 150 points available and earns 40%).
Each avatar pair appeared in each context four times at a 1:1 ratio
and two times at each other ratio. Extra trials at the 1:1 ratio because
they were particularly informative about choices rooted in prior
learning, given the equivalent point pools. Participants made
choices in a 4-s decision epoch. No further feedback was provided
in order to prevent further learning.

Posttask Ratings

Immediately following task completion, participants completed
posttask ratings to test whether their learning transferred to pre-
ferences beyond the economically framed task feedback. First, they
were asked how much they would like to be paired with each of the
players encountered in the task on an assignment in a Statistics class
and how much they would like to be paired with each of the players
on an assignment for an English class. Next, to test whether the task
did indeed generate conceptual trait impressions, participants rated
each of the previously encountered players on degree of verbal
ability, math ability, and overall intelligence. Each set of ratings was
completed using 7-point Likert-type items (1 = not at all, 7 = very
much). Finally, for exploratory purposes, participants completed a
measure of social self-efficacy (Sherer et al., 1982) which was
unrelated to behavior in the task and is not discussed further.
Participants then completed demographic measures, were paid their
performance-based bonus winnings, debriefed, and thanked.

Results

Learning

To determine whether participants learned in a context-dependent
manner, we tested the degree to which reward and trait feedback
from a given player shaped future decisions to hire that player,
within and across contexts during the learning phase. To this end, we
fit learning phase data to a lagged, mixed-effects logistic regression.
This regression predicted the log odds that a participant stays with

the most recently chosen player of the two shown onscreen on a
given trial (coded as stay = 1, switch = 0). Predictors included (1)
reward feedback most recently received from that player (i.e.,
amount received), (2) competence feedback most recently received
from that player (i.e., proportion received), (3) a variable indicating
whether the current trial matched (1) or differed from (−1) the
previous context, and (4 & 5) interactions of the context variable
with reward and trait feedback. This analysis therefore used a
regression framework to examine whether feedback reinforces
choices—that is, whether higher rewards and higher competence
lead participants to stay with the same player when next available, as
a function of context. In past work, lagged regression analyses have
been used as a model-free approximation to reinforcement learning
models (see Doll et al., 2015; Otto et al., 2013).

In the regression analysis, continuous predictors were standard-
ized to z-scores within participants to allow meaningful comparison
between variables, and we included fixed effects and random
variances for the intercept and all slopes. Analyses were performed
using the lme4 and lmerTest packages for R (Bates et al., 2015;
Kuznetsova et al., 2016; R Development Core Team, 2016). To
compare the contributions of relevant and irrelevant rewards and
traits, we contrasted coefficients against one another using the doBy
package for R (Højsgaard & Halekoh, 2016). All coefficients and
contrasts are reported in Table S3.

Results indicated that competence feedback reinforced choices
globally (i.e., across contexts), as revealed by a main effect of
competence, b = .45, SE = .04, z = 11.91, p < .001. However, this
effect was qualified by a Competence ×Context interaction, b= .27,
SE = .04, z = 7.49, p < .001. Simple effects analysis indicated that
competence more strongly reinforced choices within the same
context, b = .72, SE = .05, z = 13.42, p < .001, and more weakly
reinforced choices in a different context, b = .18, SE = .05, z = 3.62,
p < .001. That is, if a player displayed high competence on a math
trial, participants were very likely to choose that player again on a
subsequent math trial and only somewhat likely to choose that
player again on a subsequent verbal trial. Hence, trait learning
occurred in a highly context-dependent manner.

Strikingly, we found no evidence that rewards reinforced choices,
whether overall, b = .02, SE = .04, z = .65, p = .51, or in a context-
dependent manner, b = .01, SE = .0035, z = .36, p = .72. Thus,
neither context-dependent nor global experiences of prior reward
guided social decision-making. Moreover, in a linear contrast of
coefficients, the effect of trait competence was significantly greater
than the effect of prior reward values (χ2 = 68.50, p < .0001).

Computational Model of Learning

The regression analyses approximated a reinforcement learning
model while using a conventional linear model framework. To
complement these analyses, we next fit a hierarchical computational
model of learning to fully modeled the nonlinear dynamics of
learning (Hackel & Amodio, 2018). We fit behavior during the
learning phase to an adapted reinforcement learning model that
hybridizes reward and trait learning, based on prior work (Hackel
et al., 2015). Broadly, this model assumes people learn the reward
value associated with each player in each context and the compe-
tence of each player in each context (a total of four values). The
model then allows integration of these values via a choice weight (β)
for each one. These choice weights provide insight into whether
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each set of values does, in fact, guide choice. We fit values produced
by this model to all participants’ data using a hierarchical approach,
allowing us to test whether each choice weight was significantly
different from zero on average (usingWald tests; see Table S2 for all
coefficients).
Unlike prior work (Hackel et al., 2015), the present model allowed

separate learning of traits and reward values across two contexts.
That is, the model separately learned reward values (QV ) and
competence values (CV ) for the verbal context, and reward values
(QM) and competence values (CM) for the math context. On every
trial t of the learning phase, the model assumes that participants
update reward values and competence values for the chosen target
within the currently relevant context, according to Equations 1 and 2:

Qrelevant,t = Qrelevant,t−1 + αδR,relevant,t , (1)

Crelevant,t = Crelevant,t−1 + αδC,relevant,t , (2)

where Qrelevant is set to QV on verbal trials and QM on math trials,
Crelevant is set to CV on verbal trials and CM on math trials, α is a free
parameter representing a learning rate, δR,relevant,t represents a reward
prediction error for the relevant context, and δC,relevant,t represents a
competence prediction error for the relevant context. We fit one
learning rate to both reward and competence based on prior work
(Hackel et al., 2015); this feature reduces the number of free
parameters and avoids trade-offs between learning rates and choice
weights, thus stabilizing the model. Prediction errors were defined as
the difference between values received and values expected for
reward and competence, according to Equations 3 and 4:

δR,relevant,t = Rewardt − Qrelevant,t−1, (3)

δC,relevant,t = Competencet − Crelevant,t−1: (4)

Reward was defined as the number of points received, and
competence was defined as the proportion of available points earned.
During choices, the model allowed integration of competence and
reward via different choice weights in a softmax choice function,
according to Equation 5:

(See below)
where pi,t is the probability of choosing option i (of j options) on trial
t, and each β is a separate choice weight for the correspondingQ and
C values. Thus, the model allowed separate choice weights for the
relevant reward values, irrelevant reward values, relevant compe-
tence values, and irrelevant competence values. On math trials, QM
and CM were coded as relevant, while QV and CV were coded as
irrelevant, and on verbal trials, QV and CV were coded as relevant,
while QM and CM were coded as irrelevant. Before fitting
this model, we standardized reward and competence feedback (to
z-scores) for each participant in order to equate the scaling of the two
variables and allow meaningful comparisons of choice weights for
each. Both reward expectations and competence expectations were
initialized to zero to correspond to participants’ initial expectations
based on task instructions.

Reinforcement learning models are commonly fit separately for
each participant, and parameters fit across participants are then
aggregated into summary statistics (e.g., mean or median) for
analysis. However, in the present work, our analyses relied on a
between-participants counterbalancing: two variables were posi-
tively correlated for half the subjects and negatively correlated
for the other half of subjects, as described above. This design
precluded single-subject models, since these models would be
unable to dissociate the effects of two correlated variables within
a participant. Therefore, we used a hierarchical modeling approach
(Daw, 2011). This model assumes that each participant’s parameters
are drawn from a population distribution of parameters. The model
directly fits the population distribution using data from all subjects,
analogous to mixed-effects regression. That is, each choice parame-
ter is assumed to have a population average (akin to a fixed effect)
and a variance (akin to a random effect).

As in mixed-effects regression, standard errors for the average
parameters can be computed (Daw, 2011; see Supplemental Mate-
rials). We used these standard errors to construct Wald tests in order
to test if choice parameters were significantly different from zero
(see Table S2). In addition to testing the choice parameters against
zero, we contrasted parameters against one another—for example,
comparing the choice weight for competence in the relevant context
against the choice weight in the irrelevant context—using linear
contrast of coefficients (see Supplemental Materials).

Consistent with the regression analyses, results indicated that
competence feedback strongly reinforced choices within the same
context, β = 1.68, SE = .11, z = 15.00, p < .0001, and more weakly
reinforced choices in a different context, β = .69, SE = .13, z = 5.28,
p < .0001. That is, if a player displayed high competence on math
trials, participants were very likely to choose that player again on a
subsequent math trial, and only somewhat likely to choose that
player again on a subsequent verbal trial. The difference between
these coefficients was itself significant, z = 4.88, p < .0001,
indicating that context-sensitive learning was stronger than global
learning. Again, we found no evidence that rewards reinforced
choices, whether in the same context, β = −.08, SE = .10, z =
−.83, p = .41, or in a different context, β = .14, SE = .10, z = 1.40,
p = .16. Thus, neither context-specific nor global experiences of
prior reward guided social decision-making. Moreover, in a linear
contrast of coefficients, the effects of trait competence—across
relevant and irrelevant contexts—were significantly greater than
the effects of prior reward values (z = 14.63, p < .0001). Thus, the
results of this computational modeling approach were consistent
with those obtained using a regression approach.

Test Phase

Similar results were observed in the test phase, in which parti-
cipants had to apply prior learning to make fine-grained decisions in
the absence of feedback. We fit a mixed-effects logistic regression
that predicted the log odds of choosing the player on the right side of
the screen (arbitrarily chosen), as a function of the difference
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pi,t =
expðβQ,relevant × Qrelevant,i,t + βQ,irrelevant × Qirrelevant,i,t + βC,relevant × Crelevant,i,t + βC,irrelevant × Cirrelevant,i,tÞP
j expðβQ,relevant × Qrelevant,j,t + βQ,irrelevant × Qirrelevant,j,t + βC,relevant × Crelevant,j,t + βC,irrelevant × Cirrelevant,j,tÞ

, (5)
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between the two players (right–left) in (1) point pools, (2) compe-
tence in the relevant context, and (3) competence in the irrelevant
context, (3) reward value in the relevant context, and (4) reward
value in the irrelevant context. (On “verbal” trials, verbal ability was
coded as relevant and math ability was coded as irrelevant; on
“math” trials, the reverse was true.) We used the true underlying
competence and reward values of each player as predictors so that
this analysis would be independent of any assumptions derived from
the learning model. Continuous predictors were again standardized
(within participant, to z-scores) to allow meaningful comparison
between variables, and we included fixed effects and random
variances for the intercept and all slopes. All coefficients and
contrasts are reported in Table S4.

As in the learning phase, participants were more likely to choose
players who were competent (as opposed to incompetent) in the
relevant context, b = 1.78, SE = .18, z = 9.83, p < .001, while also
showing a weaker tendency to choose players who were competent
(as opposed to incompetent) in the irrelevant context, b = .58, SE =
.12, z = 4.76, p < .001 (Figure 2a). The difference between these
coefficients was significantly different from zero, χ2 = 30.38, p <
.001, indicating that context-dependent choice was stronger than
global choice of competent targets. However, as in the learning
phase, test phase choices showed no influence of prior reward values
in either the relevant context, b = .07, SE = .08, z = .91, p = .37, or
the irrelevant context, b = −.02, SE = .08, z = −.20, p = .84.
Moreover, the effects of trait competence were significantly greater
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Figure 2
Test Phase Choices

(a) (b)

(c) (d)

Note. The plot shows the proportion of test phase choices for which participants chose a partner with higher competence
in the relevant context, higher competence in the irrelevant context, higher reward value in the relevant context, and higher
reward value in the irrelevant context, split by study. Each index is computed independently of the others (see
Supplemental Methods). Error bars show SEM, adjusted for within-subject comparisons (Morey, 2008). Dashed lines
indicate chance. (a–c) In Studies 1–3 (N = 50, N = 50, N = 51), in which contexts were interleaved during learning,
participants chose partners primarily based on trait-level competence in the relevant context, less so based on competence
in the irrelevant context, and not at all based on reward values from either context. (d) In Study 4 (N = 85), in which
contexts were blocked instead of interleaved during learning, participants chose partners primarily based on competence in
the relevant context, less so based on competence in the irrelevant context, weakly based on reward value in the relevant
context, and nonsignificantly based on reward values in the irrelevant context. SEM = standard error of the mean.
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than the effects of prior reward values, ps≤ .001 (see Table S4 for all
coefficients and contrasts).

Posttask Ratings

To determine whether participants applied their learning to
noneconomic preferences outside the main task, and to determine
whether participants did form conceptual representations of traits,
we analyzed explicit ratings of partner preferences, intelligence, and
verbal and math ability using Generalized Estimating Equations
(GEE; Liang & Zeger, 1986). We did not use mixed-effects
regression because each participant made one only rating for
each player in each context, which produced too few data points
to fit random slopes. Instead, GEE fits a marginal regression model
that accounts for within-subject dependencies. (For linear models,
GEE and mixed models provide equivalent interpretations;
Fitzmaurice et al., 2004.) We fit the models using the geepack
package for R (Halekoh et al., 2006). The model predicted partner
preference and ability ratings for each player as a function of that
player’s (1) relevant competence, (2) irrelevant competence, (3)
average reward value in the relevant context, and (4) average reward
value in the irrelevant context. (For the Statistics assignment and
ratings of math ability, math competence was coded as “relevant,”
whereas verbal competence was coded as “irrelevant”; for the
English assignment and ratings of verbal ability, the opposite coding
was used.) Again, we used true underlying values as predictors, and
all predictors were standardized to z-scores within-subject before
analysis. All coefficients and contrasts are reported in Tables S5–S7.
When asked to rate their preference for partners in academic

assignments in a Statistics versus English course, participants
showed a similar pattern of trait-based preference as in the choice
task. Participants’ ratings relied primarily on the relevant compe-
tency, b = 1.40, SE = .11, χ2 = 169.88, p < .001, secondarily on the
irrelevant competency, b = .48, SE = .08, χ2 = 32.85, p < .001, and
not at all on previously experienced reward values in the relevant
context, b = .02, SE = .07, χ2 = .11, p = .74, or the irrelevant
context, b = .08, SE = .06, χ2 = 1.85, p = .17 (Table S5). Moreover,
when asked to rate the abilities of each player, participants provided
context-dependent impressions of verbal and math ability. That is,
they relied more on the relevant ability, b = .40, SE = .12, χ2 =
11.35, p < .001, than the irrelevant ability, b = .11, SE = .10, χ2 =
1.16, p = .28, as revealed in a linear contrast of coefficients, χ2 =
5.20, p = .02 (Table S6). When asked to rate impressions of overall
intelligence, participants relied to a similar degree on learning from
the verbal context, b = .88, SE = .10, χ2 = 84.59, p < .001, and the
math context, b = .91, SE = .07, χ2 = 149.86, p < .001 (Table S7).
Thus, participants formed both context-dependent and global im-
pressions of intelligence, yet context-dependent learning was more
predictive of choice.

Discussion

In Study 1, we examined the extent to which people rely on
reward and trait information during interaction-based social learning
across contexts. We found that trait-based information was learned
in a context-dependent manner, above and beyond participants’
global (i.e., cross-context) trait impression. By contrast, there was
no evidence for the influence of reward-based information in either
global or context-dependent learning. That is, participants primarily

hired workers skilled in math to answer math problems and workers
skilled in verbal ability to answer verbal problems, demonstrating
context-dependence. A similar pattern was observed in decision-
making: in the test phase, participants’ interaction choices reflected
context-specific trait learning, beyond effects of global trait learning,
but did not reflect any influence of reward learning.

Although reward-based learning was not predicted to be sensitive
to context, the lack of any reward-based learning in this study was
surprising. Indeed, simulations of a similar task in past work
demonstrated that selections based solely on reward value is the
optimal strategy for earning money during learning (Hackel et al.,
2015), and thus if anything, the task structure favored an emphasis
on reward learning. Current models of reward reinforcement learn-
ing suggest that reward associations should be prioritized in learning
and decision-making, but it is possible that reward information lacks
the nuance needed for adaptive cross-context social decisions. We
return to this issue in Study 4.

Participants’ explicit trait ratings of players indicated that trait
inferences apparent in participant’s choice behaviors corresponded
to the kind of conceptual trait inference more commonly studied in
social cognition research. Indeed, players associated with high-
competence feedback were rated as being more intelligent, and
these ratings showed context specificity. Hence, the trait compe-
tence information conveyed through interaction and feedback
related to participants’ conceptual trait representations, supporting
our interpretation of this process as supporting trait inference.

Finally, we showed that context-specific trait inferences formed
through interaction and feedback generalized to noneconomic social
decisions. That is, players whose feedback indicated higher compe-
tence in math were more likely to be approached for help with
statistics homework, whereas players whose feedback indicated
higher competence in verbal ability were more likely to be ap-
proached for help with English homework. This pattern adds
converging evidence for the context specificity of feedback-based
trait inference and begins to demonstrate the functional utility of this
form of interactive social learning.

Together, these findings provide initial evidence for our hypoth-
esis that trait-based feedback, in comparison with reward feedback,
more strongly supports the ability to form context-specific impres-
sions through direct social interaction and to apply them to interac-
tion choices.

Study 2

Study 2 was conducted to address two goals: First, we sought to
replicate the results of Study 1. Second, we sought to address a
potential limitation of Study 1 whereby the instructions may have
led participants to expect greater context specificity in players’ traits
than rewards. Specifically, the descriptions of players’ verbal and
math GRE questions may have implied that competence is likely to
vary across these two test contexts, whereas the instructions did not
provide a corresponding rationale for contextual variation in re-
wards. Although Study 1 instructions did not explicitly refer to
contextual variation in either type of feedback, participants may
nonetheless have formed different expectations of variability in
rewards and traits. Thus, in Study 2, instructions were framed to
explain and emphasize the context specificity of reward feedback.
Despite an emphasis on context-specific rewards, we again
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predicted stronger context-based effects for traits in learning and
choice.

Method

Participants

Fifty undergraduate students from the University of Delaware (33
females, 17 males,Mage = 19.14, SD = 1.70) participated in Study 2
for course credit. Sample size was determined a priori as a minimum
of 50 participants, based on Study 1. The study was approved by the
University of Delaware Institutional Review Board, and informed
consent was collected from all participants.

Stimuli

Stimuli were identical to Study 1.

Procedure

The procedure was identical to that of Study 1—participants
completed a learning phase, a test phase, and posttask ratings of each
target—with two exceptions.
First, the learning phase instructions were altered to provide an

explanation of why rewards could vary across contexts. In addition
to the instructions described in Study 1, participants were told that
points had been assigned to players on each round by either a blue
slot machine that paid out many points on average or a red slot
machine that paid out few points on average. Participants were told
that each player was randomly assigned the blue or red slot
machine for each context (verbal and math), and that players
always received points from that assigned slot machine within a
given context. These instructions explicitly noted that “some
Player A participants got bigger point pools for one type of
question than the other.” The instructions thus offered a rationale
for why point pools—and therefore reward outcomes—could vary
systematically across contexts.
Second, three exploratory posttask ratings were added to those

collected in Study 1. In addition to measuring context-dependent
impressions of competence (verbal ability, math ability) and global
impressions of competence (intelligence), as in Study 1, we further
examined whether participants formed context-dependent and
global impressions from reward feedback. First, we evaluated
whether participants explicitly formed impressions of target point
pools across settings. Participants were reminded that each player’s
point pools were assigned by a “good” or “bad” slot machine, and
that these assignments varied between Math and Verbal questions;
as a result, they were told could think of these point pools in terms of
“wealth,” given that some players had more points at stake during
one type of question or the other. Participants rated how “wealthy”
each player was in each context. If participants formed context-
specific impressions from reward feedback, they should rate players
as “wealthier” in contexts in which they had larger point pools. Next,
to evaluate whether participants formed global impressions based on
reward feedback, participants rated how lucky the player was
overall, using 7-point Likert scales ranging from 1 (not at all) to
7 (very much). If participants formed overall conceptual impressions
due to reward feedback, they should rate players as “luckier” based
on rewards accrued in both contexts. Finally, participants also rated
the generosity of each player, using the same scale, in order to

examine whether halo effects (e.g., inferring generosity from com-
petent targets) might be bounded by context (see Supplemental
Materials). To compensate for the time added by making these
ratings, we removed the ratings of partner desirability for different
types of academic assignments.

Results

Learning

As in Study 1, we tested the degree to which reward and trait
feedback from a given player shaped future decisions to hire that
player, within and across contexts. We again fit a mixed-effects
logistic regression predicting the likelihood participants stay with a
previously chosen player, given the competence previously dis-
played, reward previously received, and whether the context was the
same or different (Table S3), along with the computational model
(Table S2).

Replicating the results of the regression model in Study 1, we
observed a main effect of competence, b = .47, SE = .04, z = 10.83,
p < .001, qualified by the predicted Competence × Context interac-
tion, b = .21, SE = .05, z = 4.22, p < .001, which indicated that
competence feedback more strongly influenced choices within the
same context than the alternative context. Simple effects analysis
revealed that competence strongly reinforced choices within the
same context, b = .68, SE = .07, z = 10.16, p < .001, but more
weakly reinforced choices in the other context, b= .26, SE= .07, z=
3.97, p < .001.

Analysis of reward feedback effects again produced no evidence
that rewards reinforced choices, b = .05, SE = .04, z = 1.24, p = .22,
or that context moderated the effect of reward feedback, b = −.01,
SE = .03, z = −.42, p = .67. Thus, even when the instructions
provided participants with an explanation for why reward feedback
might differ across contexts, participants learned from traits—but
not rewards—in a context-dependent manner.

Computational Mode of Learning

Consistent with the regression results, the computational model
similarly indicated that competence feedback strongly reinforced
choices within the same context, β = 1.57, SE = .12, z = 13.04, p <
.0001, and more weakly reinforced choices in a different context,
β = .73, SE = .08, z = 9.36, p < .0001. The difference between these
coefficients was itself significant, z= 6.16, p< .0001, demonstrating
that context-sensitive learning was stronger than global learning.
We did not observe evidence that rewards reinforced choices in the
same context, β = .11, SE = .07, z = 1.57, p = .12, although choices
were reinforced by rewards in a different context, β = .29, SE = .09,
z = 3.32, p < .001. Given that no other analyses detected this effect,
that it was restricted only to the irrelevant context, and that the effect
size was still far smaller than the effects of competencies, we are
cautious in interpreting this result. Moreover, in a linear contrast of
coefficients, the effects of trait competence—across relevant and
irrelevant contexts—were significantly greater than the effects of
prior reward values (z = 8.50, p < .0001).

Test Phase

Test phase choices were analyzed using the same mixed-effects
logistic regression analysis reported in Study 1. Results once again
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replicated those of Study 1: Participants were more likely to choose
players who were competent (as opposed to incompetent) in the
relevant context, b = 1.58, SE = .14, z = 11.63, p < .001, while also
showing a weaker tendency to choose players who were competent
(as opposed to incompetent) in the irrelevant context, b = .77, SE =
.12, z = 6.67, p < .001 (Figure 2b). The difference between these
coefficients was significantly different from zero, χ2 = 21.17, p <
.001, indicating that context-dependent choice was stronger than
global choice of competent targets. Yet, test phase choices again
showed no influence of prior reward values in the relevant context,
b = .01, SE = .08, z = .15, p = .88, or the irrelevant context, b = .06,
SE= .08, z= .68, p= .50. Again, each effect of trait competence was
significantly greater than the corresponding effect of prior reward
values, ps ≤ .001 (see Table S4 for all coefficients and contrasts).

Posttask Ratings

To analyze explicit ratings of partner ability, we used the same
GEE regression approach described in Study 1. All coefficients and
contrasts are reported in Table S6 and S7.
We found identical patterns of results as in Study 1. When asked

to rate the abilities of each player, participants again relied more on
the relevant ability, b = 1.42, SE = .10, χ2 = 206.51, p < .001, than
the irrelevant ability, b = .55, SE = .09, χ2 = 40.38, p < .001, as
revealed in a linear contrast of coefficients, χ2 = 39.90, p < .001
(Table S6). When asked to rate impressions of overall intelligence,
participants again relied to a similar degree on learning from the
verbal context, b= .54, SE= .13, χ2 = 17.64, p< .001, and the math
context, b = .72, SE = .12, χ2 = 38.86, p < .001 (Table S7).
In contrast, participants did not form conceptual impressions

based on reward feedback. Context-specific impressions of player
wealth in the task did not vary based on reward feedback in each
context, b = −.05, SE = .08, χ2 = .53, p = .47, and overall
impressions of luck did not vary based on reward feedback in
the verbal context, b = −.02, SE = .13, χ2 = .02, p = .89, or reward
feedback in the math context, b = .02, SE = .11, χ2 = .02, p = .88.
Thus, participants generated conceptual trait representations based
on competence feedback but not reward feedback; this held true
across context-dependent representations (impressions of verbal vs.
math ability as opposed to verbal vs. math wealth) and global
representations (impressions of overall intelligence as opposed to
overall luck).

Discussion

Study 2 replicated the results of Study 1: Interactive trait feedback
regarding player competence supported context-specific social
learning and choice, whereas reward feedback did not. Furthermore,
the context-specific effect of trait feedback evident in choice
behavior was reflected in trait intelligence ratings of players, again
supporting a link between reinforcement learning and conceptual
representation of trait impressions.
In addition, Study 2 addressed the possibility that participants

implicitly expected trait feedback to be more context specific than
reward feedback. To this end, the instructions provided an explicit
rationale for why reward values could vary across contexts, render-
ing expectations about rewards and traits more equivalent. Despite
these modified instructions, Study 2 closely replicated Study 1
results, demonstrating again that participants’ impressions and

decisions relied primarily on context-dependent trait impressions,
with no evidence of reward-based impressions.

Study 3

An important, yet unstudied function of feedback-based trait
inference is that, unlike reward, it may have the capacity to
generalize appropriately to social decisions in novel situations.
Having observed context-dependent learning of trait knowledge
through instrumental feedback, we next asked how this learning
may be flexibly expressed in new contexts. If participants used
simple rules to map contexts to responses (e.g., “pick the person in
the blue shirt on math trials”), then they should not be able to
generalize learning to relevant novel contexts. In contrast, if trait
learning represents a flexible form of knowledge rooted in abstract
social cognitive knowledge structures—consistent with the explicit
trait ratings observed in Studies 1 and 2—then they should be able to
apply learning to novel contexts (e.g., “the person who is skilled at
math may also be skilled at science”). Prior research has shown that
humans and nonhuman animals often generalize prior learning to
novel situations based on the similarity of stimuli (Honig &
Urcuioli, 1981; Shepard, 1987). Here, we focused on people’s
ability to generalize trait learning to novel situations that require
conceptually similar abilities, reflecting a form of generalization
rooted in cognitive structure (Tenenbaum et al., 2011).

To test generalization of trait knowledge, participants in Study 3
completed additional test phase choices beyond the verbal and math
trials reported above. Participants were told that the players had also
answered questions regarding six additional skill and knowledge
areas (History, Arts, Pattern Recognition, Science, Sports, and
Logic). These abilities were selected to represent varying degrees
of similarity to math and verbal ability, as determined in an
independent pretest.

Method

Pretest Ratings

Thirty participants were recruited on website Mechanical Turk to
provide ratings of similarity between various abilities and math/
verbal ability. Participants viewed a list of 17 abilities or knowledge
areas and rated the similarity of each to verbal and math ability on a
scale ranging from 0 (not at all similar) to 100 (extremely similar).
Based on these ratings, a subset of six abilities were chosen for use in
the test phases of Studies 3 and 4, including two abilities rated as
more similar to verbal than math (History, Arts), two abilities rated
as more similar to math than verbal (Science, Pattern Recognition),
one rated as similar to neither (Sports), and one rated as similar to
both (Logic). For mean ratings, see Table S8.

Participants

Fifty-one New York University undergraduate students (22
males, 29 females, Mage = 19.86, SD = 1.50) completed Study 3
for course credit. Sample size was determined as in Studies 1 and 2.
The study was approved by the New York University Committee on
Activities Involving Human Subjects, and informed consent was
collected from all participants.
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Learning Phase

The learning phase followed an identical protocol to that of
Study 1.

Test Phase

Instructions were identical to those of Study 1 with one addition:
Participants were informed that Player A participants had also
completed questions testing new skills or knowledge areas, includ-
ing history, science, arts, logic, pattern recognition, and sports.
Participants were told they would see rounds featuring these abilities
and were asked to do their best to choose on each round.
Participants then completed 192 trials of the test phase, compris-

ing 24 each in the verbal context, math context, and six novel
contexts (history, science, arts, logic, pattern recognition, and
sports). Trials from each of the eight contexts were pseudorandomly
interleaved in different orders for each participant and divided into
four blocks of 48 trials. For each trial, a given pair of targets at a
given point ratio was randomly assigned to a context.
At the start of each trial, a context cue (e.g., HISTORY)

appeared on the screen for 2 s. Following the cue, participants
viewed two of the four players; each possible pair of avatars was
encountered four times in each context. Each player was equally
likely to appear on each side of the screen. As in Study 1, a point
pool was displayed above each avatar representing the total number
of points available for the question being answered, determined in
the same manner.

Posttask Ratings

Participants completed the same posttask ratings of players as in
Study 1, and also rated how much they would want to turn to each
player for social support and advice (see Supplemental Materials).
For exploratory purposes, participants also completed measures of
everyday interaction quality (Chiu et al., 1995) and social support
appraisals (Vaux et al., 1986), since these measures have been
suggested to relate to context-dependent social impressions in past
work (Cheng et al., 2001; Chiu et al., 1995). These measures did not
relate to task behavior and are not discussed further.

Results

Learning Phase and Test Phase Choices in
Verbal/Math Contexts

Analysis of learning phase data and test phase data involving
math and verbal contexts were conducted as in Studies 1 and 2.
Results from regression and computational analysis closely repli-
cated the results of Studies 1 and 2 and, for brevity, are reported in
the supplement (illustrated in Figure 2c and reported in Tables
S2–S7).

Novel Test Phase Choices

To address our main question of whether participants generalized
learning to novel contexts in the test phase based on similarity to the
original math and verbal contexts, we examined choices in novel
contexts. Mixed-effects logistic regression was used to predict
whether participants chose players as a function of each player’s

competencies and reward values from the verbal and math contexts,
as well as the similarity of each novel context to verbal and math (as
rated in independent pretesting). In this analysis, we could not
collapse abilities and reward values from each context into regres-
sors indicating “relevant” and “irrelevant” values, since all contexts
were novel. Instead, we separately entered the difference in value
between players in each choice pair in (1) point pools, (2) math
competence, (3) verbal competence, (4) reward value on math trials,
(5) reward value on verbal trials, (6) similarity of the current context
to math, (7) similarity of the current context to verbal, and (8–15)
interactions of each reward value and each competency with each of
the similarity regressors. These interactions indicated the extent to
which relying on values learned in a given context depends on the
similarity of the learning context to the current context. We initially
included all possible random variances, but the model failed to
converge. Therefore, we iteratively removed the smallest random
slope until the model converged (Barr et al., 2013). This procedure
led us to remove eight random variance terms. All other analysis
procedures were identical to Study 1, including analysis of posttask
ratings.

This analysis revealed first that global trait impressions contrib-
uted to choices across new contexts, as demonstrated bymain effects
of verbal competence, b = .62, SE = .09, z = 6.74, p < .0001, and
math competence, b = .83, SE = .12, z = 6.95, p < .0001. However,
the hypothesized effect of context similarity also emerged: In
contexts more similar to math, participants were more likely to
choose math-skilled players, b = .37, SE = .08, z = 4.37, p < .0001,
and in contexts rated as more similar to verbal, participants more
likely to choose verbal-skilled players, b = .10, SE = .03, z= 2.96, p
= .003. These effects were selective, consistent with a double
dissociation: Similarity to the verbal domain did not influence
reliance on math ability, b = −.01, SE = .03, z = −.36, p = .72,
and similarity to the math domain did not influence reliance on
verbal ability, b = −.01, SE = .05, z = −.24, p = .81. A contrast of
coefficients comparing generalization from relevant versus irrele-
vant domains directly supported a double dissociation, χ2 = 18.20, p
< .0001. In other words, trait learning was flexibly and selectively
applied to novel contexts based on the similarity of the abilities
required in old and novel contexts (Figure 3a). By contrast, learned
reward values again had no effects on choice overall, ps > .36, or as
a function of similarity to original contexts, ps > .31 (see Table S9
for all coefficients).

Posttask Ratings

All results related to posttask ratings of partner choice and
impressions replicated those reported in Study 1 (Tables S5–S7).

Discussion

We proposed that trait knowledge permits the generalization of
past experiences to decisions in novel situations because traits,
unlike rewards, can relate to one another semantically in a concep-
tual map (e.g., Stolier et al., 2020). Thus, in Study 3, we tested the
hypothesis that people generalize the context-dependent trait infor-
mation they learn through interaction and feedback to their choices
of partners in novel contexts. Consistent with this hypothesis, we
found that participants generalized trait knowledge based on the
similarity of traits required in both the initial and novel contexts
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(e.g., choosing someone with strong verbal ability to answer a
history question). By contrast, reward learning had no discernible
impact on choices within the original or novel contexts. This finding
reveals an important function of interaction-based trait inference: the
capacity to support flexible cross-context decision-making in novel
situations. Although prior models of reinforcement learning focus
only on reward feedback, we found that reward-based learning could
not support appropriate cross-context decision-making.

In addition, Study 3 replicated the pattern of interaction-based
learning and choice observed in Studies 1 and 2, such that parti-
cipants relied primarily on trait-indicating feedback to form context-
specific impressions and make context-appropriate choices.

Study 4

Studies 1–3 supported our main hypothesis that context-
dependent reinforcement learning relies primarily on traits infer-
ence, as compared with reward learning. However, the near
complete lack of reward learning effects was intriguing. In prior
research in which learning occurred within a single context, social
decisions were influenced by both traits and rewards (Hackel et al.,
2015, 2020). This discrepancy with past work raises the possibility
that reward associations are encoded in environments that offer
more consistent experience, such as when interacting with the same
people repeatedly in the same context, but that reward associations
may be difficult to learn in more complex environments marked by
rapid contextual changes. In Studies 1–3, verbal andmath trials were
randomly interleaved during the learning phase. Although partici-
pants were robustly able to track trait-based contingencies across
contexts in a trial-by-trial manner, they were unable to track reward
contingencies, even though the statistical distributions of reward and
trait outcomes were comparably discriminable. To explore this
possibility, in Study 4, we used a blocked learning design: Parti-
cipants learned about players first in the math context and then in the
verbal context, or vice versa, with the order of contexts counter-
balanced across participants. This design tested whether rewarding
outcomes play a role in social choices when experiences of reward
are more consistent, and it provided a more stringent test of the
hypothesis that trait learning is more context-sensitive than reward
learning.

In Study 4, we additionally probed whether generalization of trait
learning would extend to preferences for social support—a type of
preference even further removed from the original learning contexts.
In doing so, we provided a stronger test of the flexibility of trait
learning and tested whether our model could predict more natural-
istic social preferences that relate to individual well-being (Morelli
et al., 2015; Shrout et al., 2006). In our initial independent pretest,
participants judged social and emotional skills to be highly similar to
verbal ability (M = 76.24, SD = 24.77) but not math ability (M =
23.45, SD = 24.65), t(28) = 9.30, p < .001, d = 2.14. Therefore, in
Study 4, we tested whether context-dependent trait learning would
predict preferences in situations that required empathy, social
problem-solving, and analytic skill.1

Following the learning task, Study 4 participants were asked to
report the degree to which they would turn to each player for support
in three different situations involving either emotional social
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Figure 3
Trait-Based Choice in Novel Contexts That Varied in Similarity to
Math and Verbal Ability (as Rated by an Independent Sample)

(a)

(b)

Note. The y-axis indicates the proportion of times participants chose
players who were more competent at a given ability (e.g., verbal) than an
alternative player, collapsing over the other ability (e.g., math) and collaps-
ing over reward values, in (a) Study 3 and (b) Study 4. Error bars show SEM,
adjusted for within-subject comparisons (Morey, 2008). Dashed line indi-
cates chance performance. SEM = standard error of the mean.

1 In Study 3, we had asked participants howmuch they would want to turn
to each player for support and advice after a fight with a friend. In those
ratings, participants did not differentiate between verbal and math ability;
they desired competent partners overall, across verbal and math ability (see
Supplemental Analyses). However, that question was broadly phrased;
participants could have imagined seeking empathy, practical advice and
analysis, or some combination of the above. Therefore, in Study 4, we
created more detailed scenarios designed to elicit different needs to different
degrees. These scenarios were constructed and validated through pilot
testing, which offered initial evidence that the scenarios evoked more
context-dependent preferences for verbal and math abilities (see Supplemental
Materials).
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support, social problem-solving, or practical advice requiring ana-
lytic skill. We reasoned that empathy and social problem-solving
require high socioemotional skill, whereas analytic advice would
primarily require abilities viewed as more similar to math; pilot
testing confirmed this to be the case (see Supplemental Materials).
Ratings were made using a 7-point Likert-type scale.

Method

Participants

Eighty-five New York University undergraduates (62 females, 23
males, Mage = 19.56, SD = 2.05) completed the study for course
credit. We recruited a larger sample for Study 4 because we wanted
to test individual difference correlations between task behavior and
posttask ratings (see Supplemental Materials). On the basis of a
power analysis assuming a moderate correlation typical of individ-
ual difference effects (r = .3), we aimed for a sample of at least 84
participants to achieve 80% power. The study was approved by the
New York University Committee on Activities Involving Human
Subjects, and informed consent was collected from all participants.

Learning Phase

The learning phase was similar to Studies 1–3, except that instead
of presenting verbal and math trials in pseudorandomly interleaved
order, we presented the two contexts in different blocks. A single
context (e.g., verbal) was presented over 84 trials (broken into two
blocks), followed by the other context (e.g., math) for another 84
trials (also broken into two blocks). Context order was counter-
balanced across participants.

Test Phase

The test phase followed an identical protocol to that of Study 3.

Posttask Ratings

Participants completed the same posttask measures as in Studies 1
and 3. First, however, participants also saw three hypothetical social
scenarios presented in randomized order (see SupplementalMaterials
for the full text of each scenario). In an “empathy” scenario,
participants imagined that a boss or professor was rude and unfair
to them, and that they wanted to vent to someone without receiving
advice. Participants rated how much they would want to turn to each
player for empathy using 7-point Likert-type items (1= not at all, 7=
very much).
In a “social problem-solving” scenario, participants imagined

they had two close friends who had ended a romantic relationship
and were no longer speaking. Participants were further asked to
imagine that they were having difficulty managing relationships
with each friend, that they were getting ready to throw a party, and
that they were worried about whom to invite. Participants rated how
much they would want to turn to each player for advice, using the
same scale.
In a “moving” scenario, participants imagined that they were

moving to a new apartment and having a hard time figuring out how
to manage the finances and organization of their move. Participants
rated how much they would want to turn to each player for advice,
using the same scale.

Participants also rated how well they thought they would get
along with each player overall, to explore broader social preferences
removed from specific contexts, and their own identification with
verbal and math ability. (Since these measures did not relate to our
primary questions regarding context-dependence, these results are
described in Supplemental Materials.)

Results

Reward Learning in Consistent Environments

To examine how reward feedback during the learning phase
influenced decision-making, we fit test phase behavior to the
same mixed-effects logistic regression described in Studies 1–3
(Figure 2d). Despite the use of a blocked design, the pattern of trait
inference replicated Studies 1–3: During math and verbal trials,
participants relied on competence in the relevant context during the
test phase, b = .95, SE = .10, z = 9.27, p < .0001, and, to a lesser
extent, in the irrelevant context, b = .33, SE = .08, z = 4.00, p <
.0001. Again, choice effects based on competence were stronger for
relevant as opposed to irrelevant contexts, χ2 = 22.70, p < .0001.

Unlike Studies 1–3, however, we observed a weak effect of
reward feedback in the relevant context, b = .14, SE = .05, z =
2.51, p = .01. The effect of rewards in the irrelevant context was not
significant, b= .06, SE= .04, z = 1.46, p= .15—but the coefficients
for relevant and irrelevant contexts did not differ significantly from
one another, χ2 = 1.00, p = .46. Although these results may suggest
the possibility of context-sensitivity in the reward domain, they do
not offer conclusive evidence for context-sensitivity to rewards.
This pattern of results was mirrored in the computational modeling
of learning, which showed evidence that rewards reinforced behav-
ior to a small degree in both the relevant context, b = .12, SE = .04,
z = 2.75, p = .006, and marginally in the irrelevant context, b = .16,
SE = .08, z = 1.93, p = .05, but did not show evidence for context
specificity (Table S2).2 In other words, people did learn from
rewards when they experienced stable contingencies—that is,
they repeated interaction choices that led to rewarding outcomes—
but this learning was not selective to context.

To directly test our broad hypothesis that trait learning is applied
with greater context-dependence than reward learning, we con-
ducted a linear contrast of coefficients comparing the influence
of competence and rewards in the test phase as a function of context
relevance ([Relevant Competency − Irrelevant Competency] >
[Relevant Reward Value − Irrelevant Reward Value]). This contrast
indicated significantly greater context-dependence of competence
than rewards, χ2 = 13.82, p = .0002. Thus, although participants’
choices in the test phase were influenced by previously experienced
rewards following a blocked learning design, participants neverthe-
less showed more robust context-dependence of traits than rewards.
In addition, participants relied more overall on traits learned from
each context than reward associations learned from each context,
ps ≤ .005 (Table S4). This pattern held when examining posttask
ratings, which revealed small main effects of reward value in
addition to replicating the trait-based preferences and impressions
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2 The lagged regression approach was not suitable to provide a test of
context-dependent learning in Study 4; given that contexts were presented in
separate blocks, a lagged regression could not distinguish learning from the
same versus a different context, whereas analyses of the test phase and
computational modeling could do so.
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reported in previous studies (Tables S5–S7). These findings dem-
onstrate that trait learning via interaction and feedback was more
sensitive to context—even in a situation that offered greater consis-
tency and promoted a degree of reward-based behavior.
In test phase trials featuring novel contexts, we repeated the

analysis strategy described in Study 3 to test for generalization of
learning to similar abilities. (Following the procedure described in
Study 3, we removed 3 random-effect parameters to facilitate model
convergence.) These results replicated the generalization results
observed in Study 3 (Figure 3b, Table S9): Players who were
more competent in math or verbal domains were more likely to
be chosen in conceptually similar novel contexts, respectively.

Context-Sensitive Trait Learning Predicts Novel Social
Preferences

To extend our analysis of generalization beyond the academic
domain, we next examined the generalization of learning to pre-
ferences in three social scenarios designed to rely on abilities seen as
similar to verbal or math. Posttasks ratings were analyzed using
GEE, as in prior studies (see Table S10 for all coefficients).
Preference in each scenario served as the dependent variable, and
regressors included competence and reward value from each con-
text. We expected that the “empathy” scenario would require
socioemotional skills viewed as similar to verbal competence; the
“moving” scenario would require analytic skills viewed as similar to
math competence; and the “social problem-solving” scenario would
rely on both, with a heavier emphasis on socioemotional skills.
Results revealed that in the empathy scenario, preference for

seeking support was predicted by verbal ability, b = .40, SE = .08,
χ2 = 27.82, p < .001, but not math ability, b = −.02, SE = .08, χ2 =
.08, p = .78. In the social problem-solving scenario, preference for
seeking support was predicted by verbal ability, b = .51, SE = .09,
χ2 = 34.75, p < .001, and, more weakly, by math ability, b = .20,
SE = .09, χ2 = 4.45, p = .04; the coefficient for verbal ability was
significantly stronger in a contrast of coefficients, χ2 = 7.87, p =
.005. Finally, in the “moving” scenario, preference for seeking
support was more strongly predicted by math ability, b = .74,
SE = .10, χ2 = 53.98, p < .001, than by verbal ability, b = .52, SE =
.07, χ2 = 57.12, p < .001; a contrast of coefficients for math versus
verbal ability was marginally significant, χ2 = 3.2, p = .07. This
pattern of results was consistent with our trait-based generalization
hypothesis: Participants relied primarily on verbal ability when
rating partners for empathy; relied primarily on verbal ability and
secondarily on math ability when rating partners for social problem-
solving; and relied primarily on math ability and secondarily on
verbal ability for organizational and financial advice.
To directly compare the degree to which participants’ preferences

generalized from each context, we computed difference scores
indicating their relative reliance on verbal versus math competence
in each scenario. First, for each scenario, we computed a measure of
“verbal sensitivity” as ratings for high verbal ability players—low
verbal ability players, collapsing across math ability, and a “math
sensitivity” score as ratings for high math ability players—low math
ability players, collapsing across verbal ability. Then, we computed
a difference score (verbal sensitivity—math sensitivity) as an index
of “verbal prioritization” for each scenario. This score indicates
relative priority given to players specifically skilled at verbal as
opposed to math within a given scenario. We entered this score from

each scenario into a repeated measures analysis of variance (AN-
OVA) with scenario type as a factor (empathy, social problem-
solving, moving advice), providing a test of whether relative
reliance on verbal over math ability differed between scenarios.
A corresponding procedure was used to examine sensitivity to
math rewards and verbal rewards in the social scenarios.

Results revealed that participants used trait inferences to choose
partners flexibly based on the similarity of previous contexts to
relevant social needs. A comparison of reliance on verbal as opposed
to math ability for each scenario reflected prioritization of verbal
ability for the empathy scenario, M = .83, SD = 1.96, t(83) = 3.90,
p < .001, d = .43, and the social problem-solving scenario,M = .60,
SD = 2.07, t(83) = 2.64, p = .01, d = .29, but prioritization of math
ability for the moving scenario,M=−.48, SD= 2.29, t(83)=−1.90,
p = .06, d = .21. This pattern of differences was supported by a
repeated measures ANOVA testing the difference between verbal
and math prioritization for each scenario, F(2, 168) = 10.42, p <
.001, η2p = .11 (Figure 4a). These results support the proposal that
people flexibly apply trait learning to social choices in novel
situations, based on the similarity between old and new contexts.
By contrast, reward learning did not show a similar pattern of
generalization, as revealed in a corresponding ANOVA, F(2, 168)=
.38, p= .68, η2p = .005 (Table S10, Figure S1). These results suggest
that the tendency to learn context-dependent traits may underlie the
ability to make flexible social decisions (see also Supplemental
Analyses for individual differences).

Discussion

Study 4 clarified and expanded our understanding of reward
learning and trait learning in cross-context interactions in two major
ways. First, we explored the possibility that the lack of reward
learning effects in Studies 1–3 reflected a limitation of reward
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Figure 4
Posttask Preferences for Social Support in Study 4
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Note. Preference for seeking social support in different scenarios general-
ized as a function of their context-specific trait competence in math versus
verbal domains. Error bars show SEM, adjusted for within-subject compar-
isons (Morey, 2008). SEM = standard error of the mean.
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learning to track rapid changes in context. In support of this account,
the blocked context design of Study 4 yielded evidence for reward-
based reinforcement learning. Nevertheless, even in a blocked
design, there was no clear evidence for context-dependence in
reward learning. Second, Study 4 expanded the theoretical reach
of context-dependent trait generalization observed in Studies 1–3,
which focused on academic domains, to include preferences for
seeking social support. Participants generalized the trait inferences
formed through direct interaction and feedback based on verbal and
math competence to preferences for socioemotional support corre-
sponding to these competencies: They chose partners for empathy
based primarily on their verbal ability, but partners for financial
advice based on their math ability. Moreover, this pattern of
generalization emerged despite a more subtle test in comparison
with Study 3; in Study 4, scenarios were not explicitly labeled with
different abilities but instead varied implicitly in the extent to which
different abilities were required (based on pretesting). Furthermore,
these scenarios involved noneconomic social preferences far
removed from the points-based competence game where learning
occurred. This pattern of generalization was not observed for
reward-based learning. Thus, again, we found that while prior
models of interactive learning focus on reward association, it is
the trait information inferred from feedback that accommodates
context specificity and the generalization to novel socially relevant
domains.

General Discussion

The impressions we form of others often emerge from the direct
interactions we have with them across a variety of situations. Yet
previous research in social psychology has not explored the me-
chanisms through which we form impressions of others through
interaction—that is, through our action and another’s feedback—
across contexts. By contrast, models of reward reinforcement in
cognitive neuroscience pertain to interactive (i.e., feedback-based)
learning but focus on the encoding of reward associations and the
kinds of trait inferences that typically characterize social impres-
sions. Here, we integrated these approaches to examine the com-
plementary roles of interaction-based reward and trait learning in
support of specific impression formation. We found that feedback-
based trait inferences, but not reward inferences, were formed in a
context-specific manner, and that adaptive social decisions relied
primarily on these context-dependent trait inferences.
Across four experiments examining interaction-based learning of

rewards and traits between contexts, participants learned primarily
from context-dependent traits gleaned from social interactions,
secondarily from global traits, and least of all from rewards.
Although prior models of reinforcement learning, which supports
feedback-based interactive learning, focused only on reward, parti-
cipants did not form context-specific reward associations. By con-
trast, our findings suggest that traits, rather than rewards, provide a
cognitive basis for forming stable, context-sensitive impressions
from feedback in social interactions.
When confronted with novel contexts, participants generalized

previous trait learning to contexts requiring conceptually similar
traits. This pattern of selective generalization indicates that trait
knowledge can be used flexibly to navigate social decisions. By
contrast, prior reward learning had little effect on social decisions,
despite that the task afforded equivalent opportunities for learning

about both traits and rewards and that participants would have made
the most money during learning by relying entirely on reward
feedback (see Hackel et al., 2015). Although instrumental reward
feedback has been linked to specific contexts in other tasks and is a
key feature distinguishing active and passive learning (Bouton &
Todd, 2014; Gershman et al., 2015; Niv et al., 2006; Poldrack et al.,
2001), reward learning did not predict the complex social behavior
studied here. Together, these results suggest that trait learning
during social interaction permits more specific and flexible encoding
of associations, in comparison with reward associations, which in
turn supports more adaptive social decision-making across contexts.

These findings share features with traditional social cognitive
models of trait inference under passive conditions—in particular,
models of spontaneous trait inference, in which people form specific
trait impressions upon perceiving behaviors (Todorov & Uleman,
2003;Winter & Uleman, 1984). Yet, demonstrating this consistency
in interactive learning offers an important advance. Models of
reinforcement learning suggest that people learn to repeat actions
based on concrete rewards, and past work in single contexts has
found that rewards do guide learning in social interaction (Hackel
et al., 2015). Moreover, research in cognitive neuroscience suggests
that active learning through feedback proceeds through distinct
mechanisms relative to more passive learning (Poldrack et al.,
2001). Without testing interactive learning, it would therefore
remain unclear (a) to what extent trait inferences are spontaneously
formed during cross-context interactions (as opposed to passive
presentation of information) and (b) to what extent these inferences
guide cross-context choices when reward feedback is also present.
The present findings demonstrate that people do infer context-
specific traits from interacting with others, and that these traits,
rather than reward feedback, guide complex decisions across con-
texts. Thus, they demonstrate the relevance and importance of these
social cognitive processes for flexible interactive decision-making.

More broadly, these results support the theoretical integration of
reinforcement learning and social cognition to understand how
people learn about others through the choices they make and
feedback they experience during an interaction. Models of rein-
forcement learning focus on how people learn from rewarding
outcomes (Daw et al., 2011), whereas models of social cognition
traditionally focus on how people form impressions of other
people’s character traits (Uleman & Kressel, 2013). Recent
work indicates that neither approach can explain human social
learning alone (Hackel et al., 2015, 2020), consistent with the view
that multiple processes of learning and memory contribute to social
behavior (Amodio, 2019). The present work highlights the com-
plementary functions of different learning processes in social
decision-making, illuminating how social learning through inter-
action and feedback can support context-dependent social
behavior.

Trait Learning Across Social Contexts

A key novel contribution of this research is the finding that trait
inferences are particularly informative to cross-context social deci-
sion-making: Participants learned traits in a context-specific man-
ner, and they effectively and flexibly generalized these trait
impressions to novel contexts as a function of trait similarity. These
findings highlight the functionality of impression formation for
social decision-making. Past work has emphasized that trait learning
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offers a more abstract type of feedback than reward learning,
revealing a general disposition that may be expressed in multiple
specific ways (Hackel et al., 2020; Rim et al., 2009). For instance, a
person who is kind can express their kindness through a heartfelt
compliment or a thoughtful gift. Trait-indicating feedback in social
interactions therefore lets us estimate the value of interacting with
another person across specific different situations.
However, the present work highlights a second function of trait

knowledge. People often use cognitive structures not only to reason
abstractly but also to make sense of new experiences, notice relevant
differences between them, and generalize across settings (Gentner &
Markman, 1994; Tenenbaum et al., 2011). In the present work, we
demonstrate this functionality of conceptual trait knowledge for
interactive social choice. People have fine-grained knowledge about
traits and are aware of how different traits correlate with one another
(Stolier et al., 2020). Trait knowledge can therefore serve as a
conceptual map, allowing one to understand why a person’s behav-
ior might vary across contexts and to transcend the specifics of a
particular encounter to make social choices in novel situations.
Indeed, we found that people generalized from trait feedback not
only to other competencies within a similar game (Study 3) but also
to preferences for social support (Study 4), even though these
preferences were far removed from the initial interactions where
learning occurred. Thus, by applying trait-based inferences formed
through interaction—rooted in semantic memory systems—people
can leverage abstract knowledge structures about traits to choose
social partners appropriately.
What cognitive and neural processes underlie this form of

instrumental trait learning, and how do these differ from reward
learning? One possibility is that trait learning in our studies merely
reflects the learning of relative rewards—that is, the proportional
value of reward (Holroyd et al., 2004; Palminteri et al., 2015).
However, several pieces of evidence suggest that trait-based
learning studied here involves contributions of social cognition,
beyond reward associations, which rely on semantic representa-
tions of trait concepts (Amodio, 2019; Gilbert et al., 2012). First,
past work has found that trait feedback during a similar task
activates neural regions that have been linked to social impression
updating when people read about others’ behavior (Hackel et al.,
2015; Mende-Siedlecki, Cai, & Todorov et al., 2013). Second, past
work has found that participants prioritize learning from propor-
tions over absolute rewards particularly when playing with other
humans as opposed to nonsocial slot machines (Hackel et al.,
2020). This work demonstrates that people place greater emphasis
on proportional feedback specifically when it carries social signif-
icance regarding a person’s traits. Finally, in the present work,
participants applied semantic trait representations (e.g., “intelli-
gent”) and generalized trait knowledge based on the conceptual
similarity of traits required in old and new settings—processes
related to conceptual trait knowledge but not relative reward.
Altogether, our data, combined with our prior research, strongly
suggest that trait learning involves a unique contribution of social
cognition beyond any effect of relative reward encoding.
By relying on preexisting knowledge structures to lend meaning

to context-dependent behavior, trait-based learning also differs from
traditional studies of statistical learning. Humans generally engage
in statistical learning to learn regularities in their environments
(Aslin & Newport, 2012; Schapiro & Turk-Browne, 2015), which
may help people acquire trait concepts and learn how different traits

are associated with each other (Atzil et al., 2018; Stolier et al., 2020).
In turn, that cognitive structure becomes a lens that supports further
learning: in our task, participants experienced statistically equiva-
lent signals of traits and rewards, but they relied primarily on traits
that allowed them to infer meaning from regularities. Indeed,
whereas statistical learning is typically passive, implicit, and relies
on neural structures in medial temporal lobe (Schapiro & Turk-
Browne, 2015), trait-based reinforcement involves learning from
motivationally relevant feedback via a larger set of neural structures
linked to impression formation and reward (Hackel et al., 2015),
which suggests a more active engagement in social meaning-
making.

Finally, it is notable that the patterns of interactive feedback-
based learning examined in the present studies are not unique to
social interactions. Rather, they reflect domain-general processes
that have been shown to occur in response to both human and
nonhuman agents (Hackel et al., 2015). Indeed, one can infer both
the reward value and trait-like qualities of a slot machine, much like
for a human, and use conceptual maps to learn and generalize about
any kind of stimulus. However, given the complexity of human
behavior, the strong propensity to view humans in terms of trait
dispositions, and the multifaceted contexts in which human behavior
occurs, these interactive learning mechanisms are particularly rele-
vant to human social cognition (Hackel et al., 2020).

Global Versus Context-Dependent Trait Learning in
Social Interaction

Although we observed a predominant role for context-dependent
trait impressions in interactive social learning, we also found a
reliable secondary role for global trait impressions. That is, to some
degree, participants still chose partners based on math ability for a
verbal assignment and vice versa. This influence of global impres-
sions could represent a “halo effect” in which people are drawn to
individuals seen in a positive light (Nisbett & Wilson, 1977), even
when a person’s positive qualities are irrelevant to the task at hand.
Alternatively, participants might have expected verbal and math
ability to be correlated based on real-world experience, even though
verbal and math ability were uncorrelated in the present task. Future
work could test how such lay beliefs about traits influence learning
and choice on the basis of those traits.

Nonetheless, this finding helps reconcile theories of social cog-
nition that have emphasized either global trait impressions (Fiske
et al., 2007; Olivola et al., 2014; Rosenberg et al., 1968) or context-
dependent impressions and attitudes (Gawronski & Cesario, 2013;
Shoda & Mischel, 1993). In particular, we find that both types of
learning play a role in social impression formation, consistent with
an interactive memory systems model of social cognition (Amodio,
2019; Amodio & Ratner, 2011). Moreover, our findings suggest that
people can construct global trait impressions out of distinct experi-
ences with others: participants reported impressions of overall
intelligence that combined information from each individual context
(i.e., verbal and math ability). Therefore, even when people do
report global trait impressions about others, these impressions may
draw on context-dependent knowledge, which plays a stronger role
in guiding social choices. These findings begin to illuminate the
relationship between context-dependent and global trait impressions
in learning, choice, and judgment.
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Reward Learning Across Social Contexts

Whereas trait information was learned readily and generalized
flexibly across contexts, reward learning was relatively weak and a
poor predictor of social behavior. This weak effect of reward
learning was observed even though the optimal strategy for winning
money during the learning phase would have been to focus on
reward feedback (Hackel et al., 2015), and despite that, in Study 2,
instructions emphasized that rewards would vary in a context-
dependent manner and provided a corresponding narrative to let
participants make sense of these shifts.
Why were the effects of rewards so weak, relative to traits, in

cross-context learning? If trait knowledge provides a conceptual
structure to make sense of differences across contexts, then parti-
cipants may have found it more intuitive to navigate the task by
focusing on trait-relevant feedback, relative to reward feedback.
Indeed, people often see traits as a useful guide to predicting
another’s long-term future behavior (Rim et al., 2009)—especially
when others’ material resources may fluctuate (Raihani & Barclay,
2016)—and people are well practiced in forming coherent impres-
sions of other humans when faced with inconsistencies (Plaks et al.,
2003; Read & Miller, 1993). However, participants may not have
applied a similar conceptual structure to make sense of variation in
reward. Indeed, in Study 2, participants applied semantic trait labels
based on trait feedback (e.g., “intelligent”) but did not apply
semantic labels based on reward feedback (e.g., “wealthy,”
“lucky”). As a result, even when task instructions emphasized
the importance of learning from rewards across contexts, as in
Study 2, participants may have found reward feedback to be a less
natural and intuitive basis for social impressions and choices in
complex cross-context situations.
A second, complementary, reason for this pattern concerns the

manner in which reward associations are often formed. Reward
learning often involves building incremental associations between
rewards and actions through consistent experiences, as has been
proposed for habitual (or “model-free”) learning systems (Balleine &
Dickinson, 1998; Foerde et al., 2006; Gillan et al., 2015; Hackel et al.,
2019; Wood & Rünger, 2016). However, the context-dependent
nature of our task may have prevented this form of reward learning.
In prior research, in which reward and trait learning occurred in a
single context, reward learning was robust and significantly influ-
enced choice, albeit to a lesser extent than trait learning, even when it
was no longer optimal to choose previously rewarding partners
(Hackel et al., 2015, 2019). By contrast, in the present research
(Studies 1–3), rapid alternations between contexts appeared to
impede reward learning and its potential effects on social choices.
Only in Study 4, in which contexts were encountered in separate
blocks, which produced more coherent reward contingencies, did
rewards have a small influence on later social choices. Hence, reward
learningmay have a more persistent effect on social decisions inmore
consistent settings that allow people to build more habitual response
tendencies (Wood & Rünger, 2016).
It is notable that the distinction between trait and reward

learning, observed here, may appear similar to the distinction
between model-based and model-free learning in the reinforcement
learning literature. Indeed, it is possible that trait learning may
overlap conceptually with “model-based” reinforcement learning,
wherein agents use an internal representation (or model) of the
environment to form plans that maximize expected reward.

However, existing accounts of model-based learning are silent
on how trait knowledge may be used or generalized in a
context-dependent manner; it is possible that social cognitive
knowledge structures serve as an internal model of the world
used as input to a model-based choice system. At the same
time, both model-based and model-free learning can influence
reward-based social attitudes and choices (Hackel et al., 2019),
and in principle, both can support context-dependent expression of
learning (Niv et al., 2006). The potential interplay of model-based/
model-free learning processes and reward- and trait-based impres-
sions remains fertile ground for future work on interaction-based
social cognition.

Conclusions

Navigating our exceedingly complex social world depends on our
ability to maintain consistent representations of other people across
constantly changing situations. Our findings reveal how trait knowl-
edge offers a conceptual structure for learning in direct interaction
across contexts, and how these context-dependent social impres-
sions provide a flexible basis for social choices. More broadly, the
present results suggest that the study of instrumental social
learning—understanding how people learn about others through
active experience and feedback—offers a fruitful framework for
understanding complex forms of human social cognition and deci-
sion-making.
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