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ScienceDirect
How do we form impressions of people and groups and use

these representations to guide our actions? From its inception,

social neuroscience has sought to illuminate such complex

forms of social cognition, and recently these efforts have been

invigorated by the use of computational modeling.

Computational modeling provides a framework for delineating

specific processes underlying social cognition and relating

them to neural activity and behavior. We provide a primer on the

computational modeling approach and describe how it has

been used to elucidate psychological and neural mechanisms

of impression formation, social learning, moral decision

making, and intergroup bias.
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How do we form impressions of other people? Is Jane

kind? Do we like her? And can we predict how she will

act? These are core questions of social cognition—the

field of psychology devoted to understanding the pro-

cesses through which we perceive, represent, and act

towards persons and groups. Social psychologists have

pursued these questions for over 40 years, and the earliest

social neuroscience studies probed the neural basis of

impression formation and social attitudes. Recently,

social neuroscientists have used computational

approaches to advance and, in some cases, reconceptual-

ize thinking on social cognition. Here, we provide a brief

introduction to the computational modeling approach and

highlight recent studies that have used it to elucidate

social cognition.
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Computational modeling approaches to social
cognition and social neuroscience
The central aim of social cognition is to understand social

behavior by elucidating its underlying cognitive and

neural mechanisms. In the past, this was accomplished

with careful experimentation and behavioral modeling (e.

g. Process Dissociation, Quad Model) [1,2], but these

approaches are limited in their ability to assess complex

dynamic processes. Computational models allow

researchers to probe trial-by-trial dynamics of learning

and choice and to make precise quantitative predictions

about behavior across time (Box 1). In neuroimaging

research, computational models permit researchers to test

neural correlates of theorized latent variables that are not

directly observable in behavior. For example, in

models of reinforcement learning, a key variable is reward
prediction error—the discrepancy between the reward one

receives and the reward one expected (see Box 1) [3].

By fitting behavior to reinforcement learning

models, researchers can estimate a learner’s trial-by-trial

prediction errors. Fitting this timeseries to fMRI data can

then identify neural regions that covary with prediction

errors.

Formal models also permit researchers to compare human

behavior to that of an optimal agent. For example, by

comparing behavior and neural responses to a Bayesian

model, one can ask whether people conform to rational

principles of updating in social settings [4,5�] or deviate

from rationality in systematic ways [6]. Such deviations

may provide important clues to psychological and neural

processes involved in behavior. Alternatively, with agent-

based modeling, researchers can simulate agents that

instantiate different models and identify which performs

best in a given task (e.g. achieving the highest accuracy or

winning the most money) [7��].

Neuroimaging provides clues about the cognitive pro-

cesses that drive a behavior, and formal models offer a

powerful approach to more precisely delineate such pro-

cesses. For instance, people with stronger racial bias learn

more readily to avoid threatening out-group faces [8].

This bias could emerge because they evaluate the faces

more negatively (differential evaluation) or because they

learn more efficiently (differential learning). Computa-

tional modeling supports the second explanation, provid-

ing insight into how social biases shape learning itself [8].

When combined with neuroimaging, formal models can

identify dissociable patterns in neural activity, adding

further precision in characterizing neurocognitive sub-

strates of social behavior. Although one can never know

whether one’s theoretical account is the true explanation,
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Box 1 A reinforcement learning modeling primer

Computational models provide an abstract mathematical description

of how one might learn or make choices. Here, we offer a brief primer

on reinforcement learning (RL) models, which have been influential

in social neuroscience, although Bayesian and drift-diffusion models

are also widely used.

RL models describe how an agent forms action preferences through

trial and error. For instance, imagine choosing between two slot

machines to earn money. Initially, you might choose randomly. As

you win money, you form and update expectations about their

respective payouts. In RL models, this update relies on a reward
prediction error, or the difference between the reward one received

and the reward one expected (symbolized d):

dt ¼ Rewardt � Qt�1 ð1Þ

Here, Qt-1 represents the expected reward value as of the previous

time point. Prediction errors are used to update one’s previous

estimate of reward upward or downward:

Qt ¼ Qt�1 þ adt ð2Þ

where a is a free parameter representing a learning rate. This para-

meter scales prediction errors and therefore controls the extent to

which one updates expectations. With a learning rate of zero, agents

would not update their expectations at all; with a learning rate of one,

agents would fully update their expectations based on prediction

errors.

Finally, an agent makes a choice on the subsequent trial, given the

updated values of the slot machines. This is frequently modeled

using a ‘softmax’ equation:

pt
i ¼

exp b � Qi;t

� �

P
jexp b � Qj;t

� � ð3Þ

where b is a parameter controlling stochasticity of choice, and pi,t is

the probability of choosing option i (of j options) on trial t. This

equation indicates that participants will probabilistically choose an

option based on the difference in expected reward between them.

Eq. (3) can be replaced with a linear function to model responses like

reaction time [15] or skin conductance response [69].

Together, these equations specify how an agent learns which action

to take through trial and error. Given a set of parameters a and b,

these equations make quantitative predictions about how likely an

agent would be to choose each option on each trial. Computer

programs can find parameter values that maximize the match

between predicted choices and actual choices. Moreover, alternate

models can be specified and compared to see which provides the

best match (for details, see Ref. [70]).

Finally, given best-fitting parameters, one can estimate the expected

value or prediction error experienced by an agent on every trial

during choice and feedback, respectively. This timeseries can serve

as a regressor in fMRI analyses, identifying regions that show greater

fMRI signal during trials with greater value or prediction error signals.
modeling can identify the best account among competing

models (see also Refs. [9,10�]).

Contributions of computational approaches to
social cognition & social neuroscience
Here, we review notable areas of innovation in computa-

tional social neuroscience, with special attention to the

advantages described above: dissociating component
www.sciencedirect.com 
processes, linking latent variables to the brain, gaining

quantitative precision, and comparing behavior to

optimality.

Social reinforcement learning

Humans tend to repeat actions that yield reward—a

process known as reinforcement learning [3,11–13]. In

non-social tasks (e.g. winning money from a slot

machine), neural activity in ventral striatum correlates

with reward prediction errors specified by computational

models of reinforcement learning [14] (see Box 1).

Computational studies reveal that similar processes also

underlie social reinforcement learning, across behavior

and the brain. First, social rewards—including smiling

faces, social conformity, positive evaluations, and vicari-

ous gains—can reinforce behavior in the absence of

monetary reward [15–21]. Second, reward reinforcement

processes can support the formation of social attitudes

[22–24]. For example, when someone buys us lunch or

pays a compliment, this rewarding feedback can encour-

age future interactions with that partner [7��]. Both kinds

of social learning have been linked to reward prediction

errors in ventral striatum, suggesting that similar compu-

tations underlie social and non-social reinforcement (but

cf. Refs. [20,25,26].). As such, principles of reward learn-

ing can be brought to bear on sociocognitive questions,

offering novel predictions about how people develop

complex social attitudes and preferences [27�,28].

By comparison, traditional social psychological theories

assume that attitudes are formed through passive obser-

vation of positive or negative information about a person

and represented in a conceptual network [29,30]. The

emerging evidence from reinforcement modeling sug-

gests that these modes of attitude formation—conceptual

and instrumental—may be complementary, and that each

type of representation may support different aspects of

attitude expression (e.g. in judgments and impressions as

opposed to choice behaviors) [29]. Hence, a computa-

tional modeling approach promises to further illuminate

the psychological mechanisms involved in the formation

of social attitudes and preferences.

Impression formation

Computational models are shedding new light on how

people update impressions over time. Prior fMRI inves-

tigations revealed that impression updates are associated

with activity in a broad set of cortical regions, including

dorsomedial prefrontal cortex (dmPFC), inferior parietal

lobule (IPL), ventrolateral prefrontal cortex (vlPFC), and

posterior cingulate cortex (PCC) [31–34]. These activa-

tions may reflect prediction errors related to the traits of

others—that is, the discrepancy between a person’s

behavior and the behavior one expected based on a trait

impression (e.g. of competence [6,35], generosity [7��,36],
or trustworthiness [4,37–40]).
Current Opinion in Psychology 2018, 24:92–97
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Computational studies suggest that distinct brain regions

track two types of trait prediction errors. First, when

observing others, people can update a conceptual repre-

sentation of others’ traits. Therefore, some studies have

examined absolute prediction errors, or overall surprise,

when people observe another’s behavior—for instance,

learning a target was more or less generous than expected

[35,36]. These prediction errors correlate with cortical

regions including those listed above. Second, when

directly interacting with others, one can update value

representations informed by another’s traits, such as

inferring that a generous person is a valuable interaction

partner. Another line of work has therefore examined

directional prediction errors during interaction, such as

learning that a partner was more generous than expected

[7��]. These prediction errors correlate with activity in

ventral striatum—a region associated with reward and

valuation—in addition to cortical regions noted above

(Figure 1). Together, these studies reveal distinct ways

in which the brain tracks the traits of others—one that

may build a conceptual representation of others and one

that may track the value offered by a partner’s traits. In

doing so, this work again expands the scope of social

cognition to include impression formation through active

social interaction and value-based learning.

Bayesian models may further reveal whether people

update impressions in an optimal manner [4,6,7��,41].
For instance, Bayesian models specify how quickly a

learner should revise prior beliefs in light of new evi-

dence: in a volatile environment (featuring rapid change),

one should update beliefs quickly in light of new evi-

dence, whereas in a stable environment, one should

update beliefs more slowly [42]. When learning about

another person’s trustworthiness, perceivers track the

person’s volatility and update impressions quickly or

slowly as a result [4,41]. These estimates of volatility

correlate with activation in the anterior cingulate cortex

(ACC) gyrus [4]. Bayesian models can thus identify

psychological and neural processes required for optimal

impression updating.

By the same token, Bayesian models can reveal illumi-

nating deviations from optimality. For example, when

people learn about an advisor’s competence, their judg-

ments do not mimic an optimal Bayesian learner; instead,

people show confirmation bias by down-weighting nega-

tive outcomes, thus maintaining unrealistic optimism

about another’s competence [6]. By providing a bench-

mark for rationality, Bayesian models can thus identify

biases in impression updating.

Mentalizing

Social decisions often require a consideration of others’

mental states. For instance, playing chess, giving gifts,

and offering condolences require us to consider the

intentions, preferences, and emotions of others.
Current Opinion in Psychology 2018, 24:92–97 
Computational studies characterize how people update

their inferences about mental states and translate these

inferences into choices. In the context of economic

games, in which participants must often cooperate or

compete with others, computational models specify

how people update beliefs about the actions a competitor

will take [43], try to influence others [44,45��] or reason

about another’s strategy [46].

Computational approaches can also address how we

become more accurate in inferring others’ mental states

over time, such as learning that a friend often appears

calm even when upset. This process can be modeled as a

type of reinforcement learning: as people make judg-

ments and receive feedback, they adjust their inferences

by giving more or less weight to helpful or unhelpful

cues (e.g. a calm facial expression) [47�]. Indeed,

during feedback, reward prediction errors related to

accuracy were found to correlate with ventral striatum

activity. In contrast to traditional social psychological

approaches employing single-shot judgments, this

work suggests that people value social accuracy and

improve their mental state inferences over time through

reinforcement.

Observational learning

A key advantage of social living is that we learn from the

mistakes and insights of others—a process known as

observational learning [48]. Computational approaches

can identify whether direct and observational learning

rely on overlapping or distinct neural processes. During

fear conditioning, a passive form of learning, similar

neural computations support both processes [49]. In con-

trast, during instrumental learning, an active form of

learning, different computations seem to support learning

from experience and observation [50]. During both obser-

vational and direct instrumental learning, frontoparietal

regions track whether an outcome is surprising; this

response may reflect an abstract understanding of reward

contingencies. During direct instrumental learning, ven-

tral striatum further reflects whether an outcome is more

rewarding than expected, suggesting the role of a second

memory process [12,51,52].

Even without seeing others’ outcomes, merely observing

others’ decisions can influence one’s own choices [53–57].

Computational models allow researchers to test whether

people use this social information optimally in light of

their own uncertainty [5�] and to dissociate component

processes underlying social influence [57]. Such studies

thus reveal how social observation and direct experience

are tracked and integrated in the brain.

Morality

People often must choose how to allocate gain or harm

between oneself and others, and computational investi-

gations connect these moral tradeoffs to the broader study
www.sciencedirect.com
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Figure 1
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Neural correlates of prediction errors related to reward-based reinforcement and impression formation during social interaction, as revealed

through computational modeling. Participants played an economic game in which partners varied in reward value (amount of money they shared)

and generosity (proportion of available money they shared). Activity in ventral striatum (VS) correlated with (a) reward prediction errors and (b)

generosity prediction errors; overlap shown in (c). Notably, generosity prediction errors also correlated with activity in a set of regions previously

associated with impression updating, including (d) ventrolateral prefrontal cortex (vlPFC) and inferior parietal lobule (IPL), (e) posterior cingulate

cortex (PCC) and precuneus (PrCu), and (f) right temporoparietal junction (rTPJ). Reprinted from reference [7��].
of learning and choice [58]. Computational models can

identify latent variables underlying these choices—such

as the extent to which one values another’s well-being or

feels uncertain about another’s preferences—and link

these latent variables to brain activity [59,60,61��].

Computational studies have additionally brought new

attention to the learning processes that give rise to moral

judgments [62–64] and prosocial behavior [28,65,66]. For

example, past work suggests that people reciprocate with

individuals perceived to be generous [67,68]. Yet, rein-

forcement learning models suggest that people also like

individuals who provide them with large material rewards

[7��]. Indeed, people reciprocate more with wealthier

partners who provide large material rewards, and this

tendency correlates with the extent which people engage

in reward-based learning [65]. This work thus reveals how

learning dynamics give rise to morality.
www.sciencedirect.com 
Conclusion
The computational approach to social neuroscience offers

important tools for elucidating the neural and cognitive

processes that drive social cognition and behavior. This

approach reflects a natural progression from documenting

neural activations to probing their dynamic functions, and

it is being applied to an expanding array of social pro-

cesses—a harbinger of exciting innovations to come in the

study of the social brain.
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