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Through positive and negative experiences, humans learn about 
other people and objects, and the value of these interactions guides  
their future decisions. Although learning through reward has been 
characterized by models of reinforcement1, social contexts highlight 
a different form of learning, in which perceivers look beyond the 
reward of an interaction to encode more abstract and enduring traits2. 
For example, a colleague who shares resources may not only be asso-
ciated with high reward value, but may also be seen as generous—a 
trait-level attribute suggesting she would be valued in other contexts 
as well, such as when choosing a companion for a social gathering. 
This higher level component of inference, found in classic psychologi-
cal theories3,4, is absent in models of reinforcement learning, yet may 
be especially important for social decision-making.

Trait learning involves the encoding of stable characteristics from 
observed behaviors3–5, which in turn inform behavioral predictions 
and future decisions to interact with an individual across contexts2,4. 
This form of learning need not be limited to fellow humans; early 
theories of trait inference likened social dispositions to stable char-
acteristics of objects that allow the prediction of their behavior across 
contexts4, and recent research shows that trait-level social inferences 
and abstract inferences about nonsocial objects recruit overlapping 
neural regions6. Thus, while trait-level learning may be especially 
important for social decisions, it should inform decisions about 
both social and nonsocial objects beyond the reward-based learning 
explained by existing models.

To investigate the process through which traits are encoded beyond 
the reward value of people and objects during feedback-based  
learning, we examined neural activity using functional magnetic reso-
nance imaging (fMRI) during a task that decorrelated trait and reward 

learning. Thirty-one participants played a game involving four human 
targets who had ostensibly participated in prior sessions and four 
computerized slot machines. Both human and slot machine targets 
could pay out from a pool of points, which were converted into money 
at the end of the experiment.

During a training phase, participants’ interaction choices were  
followed by feedback indicating (i) the reward obtained from a target 
and (ii) the point pool available to the target. From this information, 
participants could infer the human or slot target’s generosity (defined 
as the proportion shared) above and beyond reward value (defined as 
the magnitude shared). By design, average generosity was orthogonal 
to average reward (Supplementary Fig. 1).

Next, in the test phase, point pools available to each target were 
shown before choice, allowing us to test whether participants com-
bined this contextual information with generosity knowledge during 
decision-making. Feedback was not provided, preventing further 
learning. Finally, to test whether learned generosity predicted choices 
in a different context, we assessed participants’ preferences for a  
cooperative, noneconomic interaction with each human target.

Computational modeling of behavior indicated that participants 
learned both reward value (experienced outcomes) and generos-
ity information (proportion of the allotted pool shared) and used 
a weighted combination of expectations derived from each to make 
choices across human and slot targets (see Online Methods and 
Supplementary Tables 1 and 2). However, participants relied more 
strongly on generosity information than reward value throughout the 
task: a weighting parameter w assessing the relative degree to which 
choice was driven by rewards (w = 0) or generosity (w = 1) was sig-
nificantly greater than 0.50 (median = 0.70, Wilcoxon sign rank test,  
z = −2.98, P = 0.003). Moreover, when w was allowed to vary between 
task phases, estimates for training (median = 0.76) and test phases 
(median = 0.70) did not differ significantly (z = −0.61, P = 0.54). 
This pattern emerged even though the optimal strategy during train-
ing would be to ignore generosity information. Simulations revealed 
that relying solely on reward value would yield more points (mean 
(M) = 3,133.10, s.d. = 19.92) than relying equally on reward value 
and generosity (M = 2,753, s.d. = 54.76) or solely on generosity  
(M = 2,472.90, s.d. = 38.43), suggesting a propensity to encode  
trait-level information when the context affords such inferences.

We next tested whether neural activity in response to feedback 
reflected the encoding of generosity prediction errors (experienced 
generosity – expected generosity), independently of reward predic-
tion errors (experienced reward – expected reward). Across human 
and slot trials, reward prediction errors correlated significantly with 
blood oxygenation level–dependent (BOLD) signal in the right ven-
tral striatum (small-volume corrected, family-wise error–corrected 
P value (PFWE) < 0.05; Fig. 1a and Supplementary Table 3), a region 
consistently associated with reward learning7. Strikingly, gener-
osity prediction errors also correlated with BOLD signal in right  
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ventral striatum (whole-brain corrected, 
PFWE < 0.05; Fig. 1b; conjunction shown in 
Fig. 1c), indicating that the striatum also 
encoded trait-level feedback, independent of rewards received,  
during instrumental learning.

Prediction errors for generosity, but not reward, correlated with an 
additional set of regions previously implicated in social impression 
updating (whole-brain corrected, PFWE < 0.05; Fig. 1d–f), including 
left ventrolateral prefrontal cortex, bilateral inferior parietal lobule, 
posterior cingulate cortex, precuneus and right temporoparietal junc-
tion8–11. This pattern was observed for human and slot trials, and 
activity in these regions did not differ significantly by target (though it 
remains possible that differences could emerge using other methods), 
suggesting these regions perform computations for trait-level learning 
relevant to social contexts but not exclusive to them.

To understand how learned generosity information is incorpo-
rated into choice, we examined behavior and neural activity during 
the test phase. Behavioral analyses supported computational mod-
eling results: across human and slot trials, participants were faster  
(Fig. 2a) and more likely (Fig. 2b) to choose targets who were higher 
on both prior reward value and generosity than the alternative target 
displayed onscreen (P values ≤ 0.001). Also consistent with the mod-
eling results, generosity effects were significantly stronger than those 
of prior reward value (P values ≤ 0.004; we observed no reward ×  
generosity interactions, P values > 0.49; see Online Methods and 
Supplementary Tables 4 and 5).

To use generosity knowledge during test-phase decisions, par-
ticipants needed to combine pool amounts displayed onscreen with  

previously learned generosity information to generate stimulus–outcome  
value expectancies. In previous research, value signals relevant to 
decision-making have been associated with ventromedial prefron-
tal cortex (vmPFC)12. Therefore, we defined a region of interest in 
vmPFC that responded to the difference in point pools displayed  
for chosen minus unchosen targets (Fig. 2c and Supplementary  
Table 6), given that point pools directly represented the amount of 
money available. This region responded significantly to the differ-
ence in generosity between chosen and unchosen targets (M = 22.82,  
s.d. = 37.88, t(29) = 3.30, P = 0.003), suggesting that generosity infor-
mation is combined with value signals when relevant to choice.

An analysis of individual differences corroborated this pattern: par-
ticipants’ generosity parameter estimates in vmPFC correlated with 
behavioral reliance on generosity information indicated by w (r = 0.35, 
P = 0.03, one-tailed; Fig. 2d). Thus, the representation of generosity 
knowledge in vmPFC explained variance in choice of targets on the 
basis of generosity.

A signature feature of trait learning is that it informs decisions 
across contexts4. Therefore, we tested the generalization of trait 
and reward learning to noneconomic social decisions. Participants 
were told, after the scan, that they might be invited back to com-
plete a cooperative puzzle-solving task with another participant 
from the study, with no opportunity for winning additional money. 
Participants rated their preference for being partnered with each of 
the four human targets.
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Figure 1 Statistical parametric maps showing 
neural regions where activity correlated with 
prediction errors during feedback (n = 30).  
(a,b) Activity in ventral striatum (VS) correlated 
with both reward prediction errors (a; PFWE < 0.05,  
small-volume corrected) and generosity 
prediction errors (b; PFWE < 0.05, whole- 
brain corrected). (c) Conjunction of a and b.  
(d–f) Generosity prediction errors further correlated 
with activity in a set of regions previously 
associated with social impression updating  
(PFWE < 0.05, whole-brain corrected), including 
(d) left ventrolateral prefrontal cortex (vlPFC) and 
inferior parietal lobule (IPL), (e) posterior cingulate 
cortex (PCC) and precuneus (PrCu), and (f) right 
temporoparietal junction (rTPJ).
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Figure 2 Test phase of task. Behavioral data points show predicted reaction times (a) and log odds of choice (b), ± standard error of coefficients, as estimated 
from multilevel linear and logistic regressions (n = 31). (a) Participants were faster to choose targets higher on prior reward value (t(28.10) = – 3.63,  
P = 0.001) and generosity (t(29.29) = −6.72, P = 0.2.16 × 10−7) than an alternative. (b) Participants were more likely to choose targets higher on prior 
reward value (z = 3.40, P = 0.0007) and generosity (z = 8.83, P = 2 × 10−16) than an alternative. (c) A region of vmPFC responsive to points available for 
the chosen minus unchosen targets (PFWE < 0.05, whole-brain corrected, n = 30) also responded to the generosity of chosen minus unchosen targets (region 
of interest analysis, t(29) = 3.30, P = 0.003, n = 30). (d) vmPFC responses to generosity correlated with a model-derived weighting parameter that estimated 
reliance on generosity in choice (r = 0.35, P = 0.03, one-tailed, n = 30).
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Participants strongly preferred to interact with more generous  
targets (F(1,30) = 100.2, P < 0.001, partial eta squared (η2

p) = 0.77). 
Although they also preferred targets previously associated with high 
reward value (F(1,30) = 5.32, P = 0.03, η2

p = 0.15), the effect of gener-
osity was much larger (F(1,30) = 38.36, P < 0.001, η2

p = 0.56) (Fig. 3a). 
The reward × generosity interaction was nonsignificant (P = 0.18).

Additionally, individual differences in reliance on generosity during 
the economic task (indicated by w) predicted reliance on generosity 
over reward information in post-task ratings (see Online Methods) 
(r = 0.42, P = 0.02; Fig. 3b). Furthermore, generosity parameter  
estimates in vmPFC during the economic task predicted post-
task reliance on generosity over reward value (r = 0.52, P = 0.003;  
Fig. 3c). Hence, representations of trait knowledge coinciding with 
neural value representations supported trait-based social decision-
making in a noneconomic context—a pattern of generalization that 
is the hallmark of a trait.

Together these findings demonstrate that trait information is 
encoded from feedback in addition to specific reward values and 
that trait information can dominate over reward information in  
decision-making. Notably, both forms of learning were associated  
with prediction error signals in ventral striatum. These findings 
extend our understanding of ventral striatum function beyond 
the encoding of model-based prediction errors13, belief prediction 
errors14 and hierarchical prediction errors15, and beyond the influence  
of prior social knowledge and expectancies (for example, of fairness) 
on reward processing16,17. Although trait-level learning is particularly 
relevant to human interaction, our results suggest it pertains to any 
entity that affords a trait-like attribution.

This research also advances sociocognitive theories of impression 
formation. Trait learning has previously been examined through 
instructed or observational learning (for example, presenting trait-
implying behavior descriptions), without feedback from social targets2.  
We demonstrated that impressions may also be formed through  
feedback-based instrumental learning. Indeed, the instrumental  
processes examined here implicated neural regions involved in reward 
processing and impression updating, but did not significantly correlate 
with activity in dorsomedial prefrontal regions linked previously to 
instructed trait learning18. Evidence for instrumental learning of traits 
complements previously studied trait learning processes, consistent 
with a multiple memory systems model of social cognition19. More 
broadly, these findings reveal the promise of integrating behavioral 
economics, reinforcement learning and computational neuroimaging 
to illuminate complex human decision-making processes20.

MetHods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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oNLINe MetHods
Participants. We scanned 31 healthy, right-handed participants (22 female, mean 
age = 22.26). This sample size is within the standard range for the field (for 
example, see refs. 13–15). One participant was excluded from fMRI analyses due 
to severe artifacts in reconstruction most likely due to subject motion, leading 
to a total sample of 30 subjects in fMRI analyses. Because of scanner gradient 
malfunctions during two other scanning sessions, test phase data were collected 
in one of four runs for one subject and three of four runs for another subject; all 
available runs were included in analysis. (Excluding the two subjects with missing 
test phase data from test phase analyses did not change results.) All behavioral 
data were collected and all 31 participants were included in behavioral analyses. 
Participants gave informed consent in accordance with approval from the NYU 
University Committee on Activities Involving Human Subjects.

Pre-task instructions. Upon arriving to the scan center for a study entitled 
“Social Learning & Choice,” participants read the following instructions:

This is a sequential study. Participants are randomly assigned 
to either the role of Player A (Social Choice) or Player B (Social 
Learning). Participants in the Player A role make decisions 
that affect themselves and future participants in the Player B 
role. Participants in the Player B role learn about the decisions 
of a few previous Player A participants.
If you are assigned to Player A, we will take a photo of your 
face against a white background; this photo will then be 
shown to later Player B participants as they learn about your 
choices. If you are assigned to the Player B role, no photo 
will be taken and no other participants will learn about your 
responses today.
If you are comfortable having your photo taken and shown 
to other participants, you will be randomly assigned to 
either the Player A role or the Player B role. If you are 
uncomfortable having your photo taken and shown to other  
participants, you will automatically be assigned to the Player B  
role, which involves no photographs.

Participants then indicated their preferences; in reality, all participants were 
assigned to the Player B role through a rigged drawing.

Stimuli. Participants viewed photos of four white male faces21 who were described 
as previous participants from the Player A role. Gender and race were kept  
constant across the four photos to avoid any cues to social group membership 
that could influence social judgments. The four photos were randomly assigned 
to one of the generosity/reward cells shown in Supplementary Figure 1a,  
ensuring that any potential variability in facial features (for example, attrac-
tiveness) was randomly distributed across conditions and could not influence  
effects of interest. Participants also viewed images of four schematic slot machines 
with different colors; again, each color of slot machine was randomly assigned  
to a generosity/reward level across subjects.

Training phase. Participants viewed the following instructions for the training 
phase of the task:

Player B Instructions: In this task, you will play a game where 
you learn about four previous participants assigned to the 
Player A role. In this game, each of the Player A participants 
made a series of choices about how to divide up a pool of points 
between themselves and a future Player B participant (i.e., you).  
At the end of the game, points get exchanged for money; once 
you complete the game, you will find out the exchange rate 
(i.e., how much each point is worth in cents). Press any key to 
see pictures of the four Player A participants that have been 
selected for you to play with.
On each decision, we made a different pool of points available 
to each Player A. Player A participants chose how much of that 
point pool to keep for themselves, and how much to donate to 
you. Of the many participants run in this and similar studies, 

Player A participants have shown a range of responses: some-
times they have a large pool but only share a small proportion; 
sometimes, they have a small pool and share a large proportion.  
How much you get depends on both the pool available to a 
Player A on a given trial, and how much they chose to share 
with you. On average, we find that Player B participants get 5 
to 25 points per trial, and Player A participants tend to share 
20% to 40% of the pool on average. However, these amounts 
vary (sometimes more, sometimes less), so you will have to 
learn about that as you go.
GAME INSTRUCTIONS: You will learn about the four previ-
ous Player A participants we have selected for you to play with 
(all 4 are selected to be the same gender and similar ages). You 
will see the faces of two out of four on screen on each round 
of the game. Your job is to choose whom to play with on each 
round. After you decide, you will see two pieces of informa-
tion: a) how much they chose to share with you on that round 
(labeled “shared”), and b) the pool of points that was available 
to that Decider on that round (labeled “out of ”). Over the 
course of all rounds, you will accumulate points based on your 
decisions; at the end of the game, points will be exchanged for 
cash, on top of base payment. In other words, how much you 
get paid will depend on whom you pick.
In addition, half the time you will also play the same game 
with 4 computerized “slot machines” with different colors. As 
with the human players, you will pick a slot machine, and then 
find out a) how much it pays out to you (“payout”) and b) the 
pool available for that slot machine on that trial (“out of”). The 
points you get and proportions paid from the slot machines 
have been made comparable to the average range we observe 
in the Player A participants (on average, 5 to 25 points, with 
around 20% to 40% of the pool paid out; again, this will vary). 
Press any key to see pictures of the four slot machines.
In sum: on each trial, you will see two faces or slot machines 
on the screen and pick which to play with. Indicate your 
choice using your index and middle fingers. Press your index 
finger to select the left choice, and your middle finger to select 
the right choice.
You will have 2 seconds to respond on each trial. You must 
respond in that time for your answer to be recorded and to 
potentially win money.
If you have any questions about the instructions, how pay-
ment works, or the experiment in general, let an experimenter 
know. Otherwise, you′re ready to begin. Again, use your index 
finger (left choice) and middle finger (right choice) to make 
your responses.

Participants then completed 168 trials of the training phase, composed of 
84 human trials and 84 slot trials. Human and slot trials were pseudorandomly 
interleaved in a different order for each subject, with the exception that no more 
than 8 trials of one type were allowed in a row, to avoid filtering out potential 
condition effects with a high-pass filter during fMRI analysis. Trials were divided 
into three functional runs of 56 trials each.

On each trial, participants saw two human faces or two slot machines; each 
possible pair of faces and of slots was viewed 14 times. Each face or slot was 
equally likely to appear on each side of the screen. During a 2-s choice epoch, 
participants indicated a choice by pressing their index finger (left choice) or 
middle finger (right choice) on a button box. Feedback was displayed for 3 s 
indicating the number of points received (labeled “shared” for human trials 
and “payout” for slot trials) as well as the point pool that had been available for 
the human or slot target chosen (labeled “out of ”). Feedback was followed by 
a jittered inter-trial interval (1–8 s) to allow estimation of the hemodynamic 
response across trials.

The reward and generosity values for each target were generated using the 
average values displayed in the main text plus noise with s.d. = 10 for reward  
and s.d. = 0.075 for generosity, with the limitation that reward value had to be at 
least 2 points and generosity had to be at least 0.01 to ensure meaningful values. 
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Values followed a (censored) normal distribution. Pool values displayed dur-
ing training phase feedback were determined by dividing reward by generosity. 
Values were rounded as follows: (i) noisy reward values were rounded to the 
nearest integer, (ii) pool amounts were generated as [(rounded reward value)/
(generosity)] and (iii) pool amounts were rounded to the nearest integer.

The task was implemented using the Psychtoolbox22–24 for Matlab.

Test phase. Participants viewed the following instructions:

You will now complete four more rounds of this game. 
However, there will be three differences.
First, the point pool available for each option will be shown 
above each picture before you make your choice, so you can 
use it to make your decisions. Second, you will not receive 
feedback about how much you get from each choice. At the 
end, you will be informed how much you won today. Finally, 
you will have 4 seconds to make each choice.
If you have any questions about these instructions, let the 
experimenter know. To begin, press any key now. Again, just 
use your index finger and middle finger to respond.

Participants then completed 240 trials of the test phase, divided into 120 
human trials and 120 slot trials. As in the training phase, human and slot tri-
als were pseudorandomly interleaved with the restriction that no more than  
8 trials of one type were allowed in a row. Trials were divided into four functional 
runs of 60 trials each.

On each trial, participants again saw two human faces or two slot machines; 
each possible pair of humans or slots appeared 20 times. Each face or slot was 
equally likely to appear on each side of the screen. Above each target, a point pool 
was displayed representing the number of points a human had available to share 
or a slot had available to pay out. To determine point pools, a random integer 
from 10 to 100 was generated as the pool value for one of the targets. Next, this 
amount was multiplied by one of seven ratios to determine the point pool for 
the second target. The ratios (0.33, 0.67, 0.9, 1, 1.11, 1.5, 3) were designed to be 
symmetric around 1, allowing fine-grained expression of generosity knowledge. 
Each face pair and slot pair appeared an equal number of times at each ratio 
besides 1; each pair appeared an extra 6 times at a 1:1 ratio (that is, each pair was 
seen twice at each other ratio, and eight times at a 1:1 ratio). Participants made 
choices in a 4-s decision epoch, again pressing their index or middle fingers on 
a button box to indicate left or right choices, followed by a jittered inter-trial 
interval of 1–8 s.

Post-scan ratings. Immediately upon exiting the scanner, participants were 
brought to a computer terminal for post-scan ratings. Participants were told that 
they might be invited back for a second session involving a cooperative puzzle-
solving task with a partner, and that this task would not involve the possibility of 
a monetary bonus. Finally, participants were told that the experimenters would 
try to match them with a partner based on their preferences, at which point 
participants were asked to rate how much they would like to be paired with each 
target seen in the main task on a 7-point scale (1 = not at all, 7 = definitely yes). 
No post-scan ratings were collected for slot machines, in keeping with the cover 
story. Participants then completed demographic measures.

Following these measures, participants were informed of the exchange  
rate of points to money (20 points = $0.01), paid their winnings (average  
bonus = $2.80) in addition to their base remuneration for completing the  
experimental session ($30), thanked and debriefed.

fmRI data acquisition. Images were acquired with a 3-T Siemens Allegra  
head-only scanner. Functional images (TR = 2,000 ms; effective TE = 30 ms; 
flip angle = 82, 34 3-mm slices with a 0.45-mm gap for whole-brain coverage, 
matrix = 80 × 64; FOV = 240 × 192 mm; acquisition voxel size = 3 × 3 × 3.45 mm)  
were acquired using a customized multi-echo EPI sequence developed by the 
NYU Center for Brain Imaging to mitigate the effects of susceptibility artifacts 
in medial temporal and ventromedial regions. This sequence uses the dead time 
that precedes the readout in EPI sequences with normal TEs (~30 ms) to col-
lect two more images at several echo times. The first is a low-resolution, fully 
sampled image (matrix size 80 × 16) with an echo time of 7.25 ms; the second 

is a partial-Fourier (5/8) image at full resolution with an echo time of 11.9 ms 
and with reversed phase-encoding gradients; and the third is a conventional 
fully sampled image with echo time of 32.05 ms. This scheme allows optimal 
detection of signal from fast decay (short T2*) regions and slower decay (long 
T2*) regions. Using the information from all three images, the raw data are  
fitted using an in-house algorithm developed in Matlab to obtain a spin density 
(ρ), decay rate (R2* = 1/T2*) and B0 field maps for each acquired volume. The 
final image for each repetition is a weighted average of the signal (ρe−t/T2*) from 
each voxel across the readout. The collection of one of the images with reversed 
phase-encoding gradient allows correction for the susceptibility artifacts even 
in the presence of significant subject motion during the run.

Five fixation scans were acquired at the start of each run and dropped from 
analysis to allow magnet equilibration. Slices were collected parallel to the  
AC–PC line. Finally, T1-weighted high-resolution anatomical images (MPRAGE, 
1 × 1 × 1 mm) were acquired for each subject for registration and group  
normalization purposes.

computational model. The task consisted of two stages: a training phase, in 
which participants learned about targets, and a test phase, in which they could 
express this knowledge. We adapted reinforcement models to this task using a 
hybrid reward and generosity learning model. Specifically, we use a model-free 
algorithm because each trial contained only one stage; although model-free versus 
model-based processing was not the theoretical concern of this study, future work 
could use sequential tasks to parse model-free and model-based processes, both 
of which may contribute to learning25.

In the training phase, the hybrid model assumes that participants update a 
reward value Q for the chosen target on each trial t according to 

Q Qt t Rt= +−1 ad

where α is a free parameter representing a learning rate and δRt is a reward  
prediction error defined as the difference between rewards received and  
rewards expected: 

dRt = − −Rewardt tQ 1

Participants were informed in the instructions that players in their role tend to 
earn 5 to 25 points per trial on average; therefore, reward values were initialized 
to the mean of this range (15 points).

To allow generosity learning, the model allowed participants to update a  
generosity estimate G on each trial t according to

G Gt t Gt= +−1 ad

where δGt represents a generosity prediction error defined as the difference 
between actual generosity and generosity expected: 

dGt tG= − −Generosity 1t

Generosity was defined quantitatively as the proportion of available points 
shared (by human players) or paid out (by slot machines). Since participants 
were informed that targets tend to share 20–40% per trial on average, generosity 
expectations were initialized to the mean of this range (0.30). We considered a 
model that included a unique learning rate for generosity, but this model did 
not provide a significantly better fit than using one learning rate. We therefore 
used one learning rate to stabilize parameter estimates.

An expected value based on generosity was defined as 

GV G= × Pool  

where pool is an estimate of the number of points available. In training, since 
reward was initialized to 15 points and generosity was initialized to 0.30, pool 
expectations were set to 50 points (15/0.30). We considered a model in which 
pool estimates were allowed to update, but it provided a worse fit to the data 
despite an equivalent number of parameters.

The model allowed integration of generosity-based values and reward-based 
values according to 

EV w GV w Q= + −( ) ( )1

(1)(1)

(2)(2)

(3)(3)

(4)(4)

11

(5)(5)

(6)(6)
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where w is a weighting parameter indicating how much participants rely on 
generosity values or reward values. A participant who fully relies on generosity 
values would have a weighting parameter w = 1, while a participant who fully 
relies on reward values would have a weighting parameter w = 0.

Finally, participant choices were modeled using a softmax choice function: 

p
EV

EV
i t

i t

j tj
,

,

,

exp

exp
=

×( )
×( )∑

b

b
Train

Train

where βTrain is an exploration parameter controlling stochasticity of choice in 
the training phase and pi,t is the probability of choosing option i (of j options) 
on trial t.

To model test phase behavior, final training phase estimates of Q and G were 
carried forward. Again, the model assumed that an integrated expected value 
was computed in the same manner as in equations (5) and (6), except that pool 
amounts were displayed on-screen instead of estimated from the average range. 
Additionally, choice was modeled using the softmax function in equation (7) 
using exploration parameter βTest.

Altogether this hybrid model had four free parameters: α, w, βTrain and 
βTest (Supplementary Table 1). Parameters were estimated using maximum  
a posteriori (MAP) estimation to optimize parameters across all choices, using 
priors of Gamma(1.2, scale = 5) applied to exploration parameters and Beta(1.1, 
1.1) applied to learning rates and the weighting parameter13,26. We compared  
this hybrid model (model 1) to a set of simpler models using Bayesian  
model comparison:

Model 2. Reward only (w = 0). This model constrained the weighting param-
eter to zero, rendering it equivalent to a classic Q-learning model that assumes 
people choose on the basis only of cached values in training and test.

Model 3. Generosity only (w = 1). This model constrained the weighting 
parameter to one. This model is equivalent to pure generosity learning and 
generosity-based choice.

Model 4. Optimal choice (w = 0 in training, w = 1 in test). This model tested 
whether people followed the optimal strategy (described in the main text) of 
choosing on the basis of reward value in training and generosity × pool in test, 
by constraining w to 0 in training and to 1 in test.

Model 5. Reward in training, pool in test. This model provided a more realistic 
alternative to model 2 by allowing people to choose on the basis of reward values 
in training and pool values at test without having learned generosity. This model 
again constrained w = 0 in training and w = 1 in test, but enforced a generosity 
learning rate of zero. Therefore, test phase choice was determined by pool × 
average generosity with no generosity learning.

For each model, the best-fitting parameters were used to compute the Laplace 
approximation to the Bayesian model evidence27. Model evidence was compared 
using fixed-effects methods (Wilcoxon signed rank tests owing to non-Gaussian 
distributions; group log Bayes factor) and random-effects methods (Bayesian 
model selection using the spm_BMS function in Statistical Parametric Mapping 
software version 8 (SPM8; Wellcome Trust Center for Neuroimaging, http://
www.fil.ion.ucl.ac.uk/spm/))28. The hybrid model (model 1) had the best fit to 
the data across all metrics (Supplementary Table 2).

To generate time series for fMRI analysis of the training phase, the model 
was run forward for each participant using the mean of the best-fitting param-
eters across all subjects. This process has been used to stabilize noisy parameter  
estimates29, and the mean of individual parameters provides an estimate of 
population parameters30. This process generated time series of reward predic-
tion errors and generosity prediction errors in the training phase.

To simulate different strategies in the training phase, the hybrid model  
was simulated using the average best-fitting learning rate and temperature 
parameters. In different iterations, the weighting parameter w was set to 0 (pure 
reliance on reward value), 0.5 (equal reliance on reward value and generosity 
value) and 1 (pure reliance on generosity value). A total of 10,000 simulations 
were run for each w setting, and the mean and s.d. of points accumulated were 
recorded for each.

We analyzed participants’ w parameter estimates using Wilcoxon sign rank 
tests, which did not assume normality of data.

(7)(7)

fmRI data analysis. Preprocessing and analysis of fMRI data were performed 
using SPM8. Functional images were corrected for slice time acquisition, 
realigned to adjust for participant motion, co-registered to each subject’s 
high-resolution anatomical image using linear transformations, normalized 
to MNI space using nonlinear transformation, resampled to 2 × 2 × 2 mm 
voxels and spatially smoothed using a 6-mm full-width at half-maximum 
Gaussian filter.

A general linear model (GLM) for the training phase included (1) onset of 
feedback on human trials and (2) onset of feedback on slot trials. Each feed-
back onset was modeled as an impulse and was parametrically modulated by a 
time series representing reward prediction errors and a time series representing 
generosity prediction errors (described above). Reward prediction errors and 
generosity prediction errors were orthogonal on average by design (human trials: 
average correlation = −0.005; slot trials: average correlation = 0.004), ensuring 
that any effects of generosity prediction error were above and beyond classic 
reward prediction error effects. SPM’s default serial orthogonalization of para-
metric modulators was not used, so that effects would not depend on the order 
in which regressors were entered.

Further regressors of no interest included (3) onsets of choice epochs 
for human trials and (4) onsets of choice epochs for slot trials (both lasting  
the duration of the epoch), (5) onsets of choice and (6) feedback epochs for 
missed trials (both lasting the duration of the epoch) and (7–12) the six motion 
parameters obtained during realignment. A high-pass filter with cutoff period 
of 128 s was used.

First-level contrasts for each of the two parametric regressors (reward predic-
tion error and generosity prediction error) were generated and entered into a 
second-level random effects analysis. Unless otherwise noted, all whole-brain 
analyses were corrected for multiple comparisons using a voxel-wise height 
threshold of P < 0.005 combined with an appropriate cluster extent to maintain 
a family-wise error (FWE) rate of P < 0.05, using Gaussian random field theory 
as implemented in SPM31. For the contrast of generosity prediction errors, the 
minimum cluster size as determined by SPM’s defaults was 258 voxels. (A cluster 
of 226 voxels in left ventral striatum did not survive whole-brain correction for 
multiple comparisons.) We did not find significant activation negatively associ-
ated with generosity prediction errors.

Given strong a priori hypotheses about reward prediction errors in ventral 
striatum, reward prediction errors were examined using a small-volume correc-
tion within an anatomical mask of ventral striatum. This mask was generated by 
obtaining a mask of the caudate and putamen from the Automated Anatomical 
Labeling atlas32 and maintaining only ventral portions, defined as z < 2 for 
putamen and z < 7 for caudate33. The mask included 981 voxels, and within this 
mask, a cluster of 161 voxels was deemed significant in SPM’s small-volume 
correction procedure. For this contrast, we observed a cluster of 18 voxels in 
left ventral striatum that did not survive small-volume correction for multiple 
comparisons.

Since the test of reward prediction errors was more lenient, we tested whether 
any regions associated with generosity prediction errors also showed effects of 
reward prediction errors using small-volume corrections, to test that generosity 
prediction errors did recruit a unique network. Within each region signifi-
cantly activated by generosity prediction errors, only ventral striatum showed 
significant activity correlating with reward prediction errors, suggesting  
that activity in the other regions was unique to generosity prediction errors. 
As a second test, we extracted average signal change from within each of these 
regions using a region of interest (ROI) approach (as opposed to small-volume 
correction); again, none of these regions other than ventral striatum correlated  
significantly with reward prediction errors. Finally, since we observed a  
cluster of 18 voxels (at voxel-wise P < 0.005) in left ventral striatum for 
reward prediction errors, we examined activation for reward prediction errors  
within regions associated with generosity prediction errors at this uncorrected 
threshold; again, we did not observe activation in other regions associated  
with generosity prediction errors.

We also tested for unsigned (absolute) prediction errors across reward and 
generosity. For reward, we found activation in regions previously associated with 
responses to surprising outcomes34,35, including right inferior frontal gyrus, 
middle frontal gyrus and posterior parietal cortex (Supplementary Table 3).  
No regions showed decreasing activation with unsigned prediction errors  
(indicating certainty). For generosity, we did not observe significant activations 
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to unsigned prediction errors, and only a cluster along superior occipital gyrus 
showed decreasing activity with unsigned prediction errors.

For the test phase, a GLM included (1) onsets for the decision phase of human 
trials and (2) onsets for the decision phase of slot trials. Trials were modeled as 
epochs lasting for the length of each trial’s reaction time (that is, events began at 
trial onset and ended at the time a decision was entered). Each trial was modeled 
with six parametric regressors:

i. Point pool difference (chosen – unchosen options)
ii. Point pool average (chosen, unchosen options)
iii. Generosity difference (chosen – unchosen options)
iv. Generosity average (chosen, unchosen options)
v. Reward value difference (chosen – unchosen options)

vi. Reward value average (chosen, unchosen options)

The model therefore accounted for baseline levels of each variable as well as 
the difference between chosen and unchosen options. We used true underly-
ing generosity and reward values, which allows the GLM weighting to reflect 
individual differences.

Pool differences (chosen minus unchosen values) were correlated with the 
average pool amounts as a result of the task design because pool amounts were 
determined by assigning a random integer to one option and multiplying this 
amount by one of a set of ratios to generate the second option. For this reason, 
SPM’s default orthogonalization of parametric regressors was not used; orthogo-
nalizing regressors would incorrectly assign set-level pool variance to the pool 
difference regressor. For example, a choice set with pool values of 90, 60 has a 
higher set-level value than a choice set with pool values 60, 40, and this variance 
should not be assigned to the regressor representing the difference. Avoiding 
orthogonalization therefore allowed a more appropriate test of the difference 
between chosen and unchosen.

Regressors of no interest included (3) onsets of choice epochs for missed  
trials (lasting the duration of the epoch) and (4–9) the six motion parameters 
obtained during realignment. A high-pass filter with a cutoff period of 128 s 
was used.

Since point pools displayed onscreen straightforwardly predicted differences 
in expected reward (mean correlation = 0.73), we created an ROI in vmPFC 
based on the pool point differences. First-level contrasts were generated for the 
regressor representing the difference of chosen minus unchosen pool amounts 
and were entered into a second-level random effects analysis. The minimum 
cluster size for a whole-brain correction was 281 voxels, based on SPM’s defaults 
(as described above). We defined a functional ROI corresponding to the pool 
difference within vmPFC and extracted parameter estimates within this ROI for 
the contrast of the difference between chosen and unchosen generosity amounts, 
using the MarsBar toolbox33.

If pool differences and generosity differences had been positively  
correlated, an ROI based on pool signals could provide a biased test of  
whether this region correlates with generosity. Two factors preclude this  
concern. First, the two regressors were not orthogonalized when they were 
simultaneously entered into the GLM, and so each should reflect unique  
variance. Second, the average correlations between pool differences and  
generosity differences were in the negative direction (mean correlation =  
− 0.15 for human trials, −0.10 for slot trials). Therefore, any residual shared 
variance would, if anything, bias the test against our hypothesis, making 
the test of positive generosity correlates in vmPFC more conservative. 
Supplementary Table 7 displays the average correlations between all regressors  
in this analysis.

However, to further provide independence, we conducted a leave-one- 
subject-out cross-validation36. Specifically, we computed 30 GLMs, each leaving 
out one subject. For each GLM, we defined an ROI based on vmPFC activa-
tion for point pools at the group level. (Because each analysis included fewer 
subjects and was only used to define a region for an independent test, we used 
a slightly more liberal, uncorrected statistical threshold of P < 0.005 per voxel 
with a cluster extent of at least 200 voxels; see ref. 36 for a discussion of why this 
selection method does not lead to biased results.) We then used these ROIs to 
extract parameter estimates for generosity for the left-out subject. All results 
remained identical: we found a main effect of generosity differences, t(29) = 
3.00, P = 0.005; a correlation between vmPFC and the w parameter, r = 0.35,  

P = 0.03 (one-tailed) and a correlation between vmPFC activation and the post-
task index, r = 0.50, P = 0.005. To test robustness to assumptions of normal-
ity in Fisher’s test for the correlations, we also computed bootstrap confidence  
intervals, which provided identical results.

We did not find significant neural correlates of the difference in prior reward 
value (chosen – unchosen) within the vmPFC ROI, and no regions survived 
correction for multiple comparisons in a whole-brain analysis. However, we 
did find that the average prior reward value of the chosen and unchosen targets 
was correlated with activation in a cluster extending across hippocampus and 
parahippocampal gyrus, posterior putamen and insula (Supplementary Fig. 2 
and Supplementary Table 6).

Test phase behavioral analyses. Test phase reaction times (RTs) were analyzed 
using multilevel modeling, which we used to predict trial-by-trial responses.  
As in test phase fMRI analyses, predictors included the difference between 
chosen and unchosen values of (1) displayed pool amounts, (2) generosity and  
(3) prior reward value. Fixed effects and random effects were included for all  
predictors, and all continuous predictors were z-scored. Target type was  
entered as a categorical predictor (–1 = human, 1 = slot). We also included the 
interactions of the generosity, prior reward value and target type terms. For the 
test of choice behavior, we used a multilevel logistic model that predicted the 
probability of choosing the target on the right as a function of the difference 
of values (right – left) for (1) pool, (2) generosity and (3) prior reward, again 
z-scored, again including target type and interactions, and again including fixed 
effects and random effects for each coefficient. Both analyses used objective 
underlying reward and generosity values to provide converging evidence to the 
computational model.

For both analyses, each continuous predictor was subject-mean centered, and 
analyses were performed using the lme4 and lmerTest packages for R37–39. To 
compute the predicted reaction times, log odds of choice and standard errors for 
high and low generosity and reward shown in Figure 2, fixed-effects predictors for 
reward and generosity were recentered 1 s.d. above and below the mean for each 
individual, the model was recomputed, and simple intercepts and their standard  
errors were recorded for each recentered model40. Pool amounts remained  
mean-centered to compute predicted values at different generosity and reward 
levels while accounting for pool. Reaction times less than 200 ms were excluded 
from analysis; removing this exclusion rule did not change results. Additionally, 
log-transforming reaction times for normality in the linear regression led to 
identical results. (Logistic regression does not assume normality of data.)

Next, to test the relative contributions of generosity and reward value to 
behavior, we contrasted the coefficients for each predictor against each other41. 
Since predictors were z-scored, β weights could be meaningfully compared 
without concerns about differences in units. For reaction times, since the two 
coefficients had slightly different degrees of freedom, we used the smaller of the 
two to provide a more conservative test.

In addition to effects reported in the main text, we report several  
related effects of interest in Supplementary Tables 4 and 5, including main 
effects of pool values, target type × generosity interactions, and simple effects 
for generosity and reward across target types. We analyzed simple effects by 
dummy coding the target type variable such that zero corresponded to either 
humans or slots.

Post-task analyses. To analyze post-scan social valuations, ratings for the four 
human targets were entered into a 2 × 2 repeated measures ANOVA (generosity: 
high, low × reward: high, low). Note that our approach here deviates from the 
multilevel regression approach we used elsewhere because participants made 
only one post-task rating for each unique combination of reward and generos-
ity level. Means and s.d. are reported in Supplementary Table 8. We did not 
test for normality of data because ANOVA is generally robust to violations of  
this assumption42.

Next we computed an index of individual sensitivity to generosity versus 
reward as follows. First, we computed a generosity sensitivity measure collaps-
ing across reward value as 

[average ratings for high generosity targets
average ratings fo

]
[− rr low generosity targets]
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We similarly computed a reward sensitivity measure collapsing across  
generosity levels as 

[ ]
[

average ratings for high reward targets
average ratings for low− rreward targets]

Finally, we computed a differential sensitivity measure as 

[ ]generosity sensitivity reward sensitivity−

Note that differential sensitivity is mathematically equivalent to subtracting

[ratings for high generosity, low reward target]
[ratings for low g− eenerosity, high reward target]

To test the relative strength of generosity versus reward on average, we con-
ducted an F contrast of generosity sensitivity versus reward sensitivity; this test 
is equivalent to a one-sample t-test against zero on the differential sensitivity 
measure. Finally, to test robustness to assumptions of normality in Fisher’s test 
for the correlation between the w parameter and the post-task index, we also 
used bootstrap confidence intervals, which provided identical results.

A Supplementary methods checklist is available.
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